Experimental Investigation of the Fault Tolerance of IDS Models

M. Murakami, N. Honda
{"title":"Experimental Investigation of the Fault Tolerance of IDS Models","authors":"M. Murakami, N. Honda","doi":"10.1109/FUZZY.2007.4295667","DOIUrl":null,"url":null,"abstract":"The ink drop spread (IDS) method is a modeling technique that is proposed as a new paradigm of soft computing. The structure of IDS models is similar to that of artificial neural networks (ANNs): they comprise distributed processing units. The beneficial property of fault tolerance is obtained when such parallel processing networks are implemented with dedicated hardware. Among the ANNs, radial basis function networks (RBFNs) are known to possess superior fault tolerance. This study evaluates the fault tolerances of the IDS models and RBFNs using the approximation of continuous functions. The experimental results demonstrate that the IDS models are highly fault tolerant in comparison with the RBFNs.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The ink drop spread (IDS) method is a modeling technique that is proposed as a new paradigm of soft computing. The structure of IDS models is similar to that of artificial neural networks (ANNs): they comprise distributed processing units. The beneficial property of fault tolerance is obtained when such parallel processing networks are implemented with dedicated hardware. Among the ANNs, radial basis function networks (RBFNs) are known to possess superior fault tolerance. This study evaluates the fault tolerances of the IDS models and RBFNs using the approximation of continuous functions. The experimental results demonstrate that the IDS models are highly fault tolerant in comparison with the RBFNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IDS模型容错的实验研究
墨滴扩散(IDS)方法是作为软计算新范式提出的一种建模技术。IDS模型的结构类似于人工神经网络(ann):它们由分布式处理单元组成。采用专用硬件实现这种并行处理网络,获得了良好的容错性能。在人工神经网络中,径向基函数网络(rbfn)具有较好的容错性。本文利用连续函数的近似方法对IDS模型和rbfn的容错性进行了评价。实验结果表明,与rbfn模型相比,IDS模型具有较高的容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1