Real-time execution of linear ringdown analysis methods for identifying dominant modes

F. E. Reyes, M. G. Juarez, A. Zamora, J. Ortiz, J. C. Silva, M. Paternina, C. Toledo-Santos
{"title":"Real-time execution of linear ringdown analysis methods for identifying dominant modes","authors":"F. E. Reyes, M. G. Juarez, A. Zamora, J. Ortiz, J. C. Silva, M. Paternina, C. Toledo-Santos","doi":"10.1109/SGSMA51733.2022.9806011","DOIUrl":null,"url":null,"abstract":"This paper specializes in the real-time execution of three mature linear ringdown analysis methods for modal identification in power systems. Data-based identification methods such as Prony’s method, eigensystem realization algorithm, and matrix pencil are embedded into a Matlab & Simulink-powered real-time simulation environment. Their implementations are achieved by using a sliding window approach, are profited by the inherent features of a parallel computing software architecture, reduce the computational complexity of the methods through shorttime windows length, and provide instantaneous modal information (damping and frequency). These enhancements make part of a user-friendly tool to effectively deal with the modal identification issue. This tool is successfully tested using two test power systems: the two-area Kundur system and a reduced-order representation of the New England power grid. Its effectiveness and performance are demonstrated with the attained results and its validation.","PeriodicalId":256954,"journal":{"name":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGSMA51733.2022.9806011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper specializes in the real-time execution of three mature linear ringdown analysis methods for modal identification in power systems. Data-based identification methods such as Prony’s method, eigensystem realization algorithm, and matrix pencil are embedded into a Matlab & Simulink-powered real-time simulation environment. Their implementations are achieved by using a sliding window approach, are profited by the inherent features of a parallel computing software architecture, reduce the computational complexity of the methods through shorttime windows length, and provide instantaneous modal information (damping and frequency). These enhancements make part of a user-friendly tool to effectively deal with the modal identification issue. This tool is successfully tested using two test power systems: the two-area Kundur system and a reduced-order representation of the New England power grid. Its effectiveness and performance are demonstrated with the attained results and its validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时执行线性铃响分析方法,以识别优势模式
本文研究了三种成熟的线性衰荡分析方法在电力系统模态识别中的实时执行。基于数据的识别方法,如proony方法,特征系统实现算法和矩阵铅笔嵌入到Matlab和simulink驱动的实时仿真环境中。它们的实现是通过使用滑动窗口方法实现的,得益于并行计算软件架构的固有特征,通过短时间窗口长度减少了方法的计算复杂性,并提供瞬时模态信息(阻尼和频率)。这些增强功能构成了用户友好工具的一部分,可以有效地处理模态识别问题。该工具已成功地使用两种测试电力系统进行了测试:两区Kundur系统和新英格兰电网的降阶表示。通过所获得的结果及其验证,证明了该方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Using a Simple Feature for Detecting Multiple Types of Events From PMU Data Using Synchrophasor Status Word as Data Quality Indicator: What to Expect in the Field? Centralised system for overfrequency real-time dynamic settings for generators Dynamic Performance Comparison and Prediction based on Distribution-level Phasor Measurement Units A Reconfigurable Synchrophasor Synchronization Gateway & Controller Architecture for DERs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1