{"title":"Wireless Acquisition and Transmission of Mechanical Vibration Signal: A Review","authors":"Yunfei Ma, Xisheng Jia, Guanglong Wang, Huajun Bai, Chiming Guo, Xudong Zhao","doi":"10.1109/QR2MSE46217.2019.9021138","DOIUrl":null,"url":null,"abstract":"For the purpose of monitoring the mechanical equipment in real time, it is of significant potential to collect and transmit mechanical vibration signal through the use of wireless technology. Subjected to the limitation of the narrow bandwidth of the wireless transmission, coupled with the high sampling frequency required by the mechanical vibration signal, it is deemed as quite essential to carry out the on-chip feature extraction or data compression on the sensor node prior to transmitting. The current paper provides a summary of the existing research status from the aspects of sensor node design, on-chip feature extraction and data compression and reconstruction of mechanical vibration signal. Thereafter, we not only summarize but also forecast the research in this field. The current paper is expected to be possibly used as a reference for subsequent research.","PeriodicalId":233855,"journal":{"name":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QR2MSE46217.2019.9021138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For the purpose of monitoring the mechanical equipment in real time, it is of significant potential to collect and transmit mechanical vibration signal through the use of wireless technology. Subjected to the limitation of the narrow bandwidth of the wireless transmission, coupled with the high sampling frequency required by the mechanical vibration signal, it is deemed as quite essential to carry out the on-chip feature extraction or data compression on the sensor node prior to transmitting. The current paper provides a summary of the existing research status from the aspects of sensor node design, on-chip feature extraction and data compression and reconstruction of mechanical vibration signal. Thereafter, we not only summarize but also forecast the research in this field. The current paper is expected to be possibly used as a reference for subsequent research.