Automatic Classification of Pararubber Trees in Thailand from LANDSAT-8 Images using Neural Networks Method

C. Supunyachotsakul, N. Suksangpanya
{"title":"Automatic Classification of Pararubber Trees in Thailand from LANDSAT-8 Images using Neural Networks Method","authors":"C. Supunyachotsakul, N. Suksangpanya","doi":"10.1109/ICEAST.2019.8802606","DOIUrl":null,"url":null,"abstract":"Classifying features from satellite images has been a time-consuming manual process which requires lots of manpower. This work exploits deep convolutional decoder encoder neural network, to develop an algorithm that can automatically classify the extents of the Pararubber tree growing areas from the LANDSAT-8 images. The classification resulted from this approach was verified. In conclusion, the classification accuracy achieved is at 86.90% with Cohen's kappa at 73.80% which is considered satisfactory.","PeriodicalId":188498,"journal":{"name":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2019.8802606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying features from satellite images has been a time-consuming manual process which requires lots of manpower. This work exploits deep convolutional decoder encoder neural network, to develop an algorithm that can automatically classify the extents of the Pararubber tree growing areas from the LANDSAT-8 images. The classification resulted from this approach was verified. In conclusion, the classification accuracy achieved is at 86.90% with Cohen's kappa at 73.80% which is considered satisfactory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的泰国LANDSAT-8影像副橡胶树自动分类
卫星图像特征分类是一个耗时的人工过程,需要大量的人力。这项工作利用深度卷积解码器编码器神经网络,开发了一种算法,可以从LANDSAT-8图像中自动分类副橡胶树生长区域的范围。对该方法的分类结果进行了验证。综上所述,所获得的分类准确率为86.90%,Cohen’s kappa为73.80%,可以认为是满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal Verification of the Accounting Information Interfaces Using Colored Petri Net Multi-Channel Surface Electromyograph for Monitoring Intradialytic Cramp Narrowband-Internet of Things (NB-IoT) System for Elderly Healthcare Services Municipal Solid Waste Segregation with CNN Measuring Icon Recognization Mapping with Automated Decision Making System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1