Multidimensional morphable models

Michael J. Jones, T. Poggio
{"title":"Multidimensional morphable models","authors":"Michael J. Jones, T. Poggio","doi":"10.1109/ICCV.1998.710791","DOIUrl":null,"url":null,"abstract":"We describe a flexible model for representing images of objects of a certain class, known a priori, such as faces, and introduce a new algorithm for matching it to a novel image and thereby performing image analysis. We call this model a multidimensional morphable model or just a, morphable model. The morphable model is learned from example images (called prototypes) of objects of a class. In this paper we introduce an effective stochastic gradient descent algorithm that automaticaIly matches a model to a novel image by finding the parameters that minimize the error between the image generated by the model and the novel image. Two examples demonstrate the robustness and the broad range of applicability of the matching algorithm and the underlying morphable model. Our approach can provide novel solutions to several vision tasks, including the computation of image correspondence, object verification, image synthesis and image compression.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

Abstract

We describe a flexible model for representing images of objects of a certain class, known a priori, such as faces, and introduce a new algorithm for matching it to a novel image and thereby performing image analysis. We call this model a multidimensional morphable model or just a, morphable model. The morphable model is learned from example images (called prototypes) of objects of a class. In this paper we introduce an effective stochastic gradient descent algorithm that automaticaIly matches a model to a novel image by finding the parameters that minimize the error between the image generated by the model and the novel image. Two examples demonstrate the robustness and the broad range of applicability of the matching algorithm and the underlying morphable model. Our approach can provide novel solutions to several vision tasks, including the computation of image correspondence, object verification, image synthesis and image compression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维变形模型
我们描述了一个灵活的模型来表示特定类别的物体的图像,已知的先验,如人脸,并引入了一个新的算法来匹配它到一个新的图像,从而执行图像分析。我们称这个模型为多维可变形模型或者只是一个可变形模型。变形模型是从类对象的示例图像(称为原型)中学习的。本文介绍了一种有效的随机梯度下降算法,该算法通过寻找使模型生成的图像与新图像之间的误差最小的参数,自动将模型与新图像进行匹配。两个实例证明了该匹配算法和底层可变形模型的鲁棒性和广泛的适用性。我们的方法可以为图像对应计算、目标验证、图像合成和图像压缩等视觉任务提供新颖的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1