{"title":"Diversity Gain Analysis of Underwater Vertical MIMO VLC Links in the Presence of Turbulence","authors":"Anil Yilmaz, M. Elamassie, M. Uysal","doi":"10.1109/BlackSeaCom.2019.8812823","DOIUrl":null,"url":null,"abstract":"To satisfy the demands of high data rate underwater applications such as image and real-time video transmission, underwater visible light communication (UVLC) has emerged as an alternative to acoustic signaling. One of the major impairments in UVLC systems is turbulence-induced fading as a result of temporal variations in temperature and salinity. Furthermore, unlike the horizontal links modeled with fixed turbulence strength, vertical links experience varying turbulence strength based on the depth-dependent temperature and salinity profiles. In this paper, we consider a multiple-input multiple-output (MIMO) UVLC link over a vertical turbulence channel which is modeled as the concatenation of multiple non-mixing layers. Under the assumption of cascaded log-normal channel model, we derive the outage probability of vertical MIMO UVLC links and quantify the diversity gain in terms of the number of transmitter/receivers.","PeriodicalId":359145,"journal":{"name":"2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2019.8812823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
To satisfy the demands of high data rate underwater applications such as image and real-time video transmission, underwater visible light communication (UVLC) has emerged as an alternative to acoustic signaling. One of the major impairments in UVLC systems is turbulence-induced fading as a result of temporal variations in temperature and salinity. Furthermore, unlike the horizontal links modeled with fixed turbulence strength, vertical links experience varying turbulence strength based on the depth-dependent temperature and salinity profiles. In this paper, we consider a multiple-input multiple-output (MIMO) UVLC link over a vertical turbulence channel which is modeled as the concatenation of multiple non-mixing layers. Under the assumption of cascaded log-normal channel model, we derive the outage probability of vertical MIMO UVLC links and quantify the diversity gain in terms of the number of transmitter/receivers.