A Novel Method Using Local Feature to Enhance GCN for Text Classification

Chunlian Yang, Yuchen Guo, Xiaowei Li, Benhui Chen
{"title":"A Novel Method Using Local Feature to Enhance GCN for Text Classification","authors":"Chunlian Yang, Yuchen Guo, Xiaowei Li, Benhui Chen","doi":"10.1109/ICICIP53388.2021.9642171","DOIUrl":null,"url":null,"abstract":"Text classification is a classical and basic task of natural language processing (NLP). In recent years, machine learning has been widely used for text classification. However traditional machine learning methods depend heavily on high quality feature engineering. Recently, deep learning methods have contributed to improving text classification performance. Graph convolution network (GCN) has been proved to be able to capture spatial feature of documents. However, the ability of GCN to capture sentence local features and context information is limited. In this paper, we propose a novel method using local features to enhance GCN for text classification. The combination methods based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) (such as Bi-LSTM, C-LSTM and ServeNet) are used to capture local features to enrich feature information, and a weight value is used to adjust the intensity of enhancement. We conducted extensive experiments on 5 benchmark datasets (WSDataset, Ohsumed, R52, R8, 20NG), proving the proposed method significantly outperforms the baseline deep learning methods.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Text classification is a classical and basic task of natural language processing (NLP). In recent years, machine learning has been widely used for text classification. However traditional machine learning methods depend heavily on high quality feature engineering. Recently, deep learning methods have contributed to improving text classification performance. Graph convolution network (GCN) has been proved to be able to capture spatial feature of documents. However, the ability of GCN to capture sentence local features and context information is limited. In this paper, we propose a novel method using local features to enhance GCN for text classification. The combination methods based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) (such as Bi-LSTM, C-LSTM and ServeNet) are used to capture local features to enrich feature information, and a weight value is used to adjust the intensity of enhancement. We conducted extensive experiments on 5 benchmark datasets (WSDataset, Ohsumed, R52, R8, 20NG), proving the proposed method significantly outperforms the baseline deep learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部特征增强GCN文本分类的新方法
文本分类是自然语言处理(NLP)的一项经典而基本的任务。近年来,机器学习在文本分类中得到了广泛的应用。然而,传统的机器学习方法严重依赖于高质量的特征工程。最近,深度学习方法对提高文本分类性能做出了贡献。图卷积网络(GCN)已被证明能够捕获文档的空间特征。然而,GCN获取句子局部特征和上下文信息的能力有限。本文提出了一种利用局部特征增强GCN文本分类的新方法。采用基于卷积神经网络(CNN)和LSTM (Long - Short-Term Memory, LSTM)的组合方法(如Bi-LSTM、C-LSTM和ServeNet)捕获局部特征以丰富特征信息,并利用权值调整增强强度。我们在5个基准数据集(WSDataset, Ohsumed, R52, R8, 20NG)上进行了大量实验,证明了所提出的方法明显优于基线深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1