A Fault-Tolerant MPSoC For CubeSats

C. Fuchs, Pai H. Chou, X. Wen, N. Murillo, G. Furano, S. Holst, A. Tavoularis, Shyue-Kung Lu, A. Plaat, K. Marinis
{"title":"A Fault-Tolerant MPSoC For CubeSats","authors":"C. Fuchs, Pai H. Chou, X. Wen, N. Murillo, G. Furano, S. Holst, A. Tavoularis, Shyue-Kung Lu, A. Plaat, K. Marinis","doi":"10.1109/DFT.2019.8875417","DOIUrl":null,"url":null,"abstract":"We present the implementation of a fault-tolerant MP-SoC for very small satellites (<100kg) based upon commercial components and library IP. This MPSoC is the result of a codesign process and is designed as an ideal platform for software-implemented fault-tolerance measures. It enforces strong isolation between processors, and combines fault-tolerance measures across the embedded stack within an FPGA. This allows us to assure robustness for a satellite on-board computer consisting of modern semiconductors manufactured in fine technology nodes, for which traditional fault-tolerance concepts are ineffective. We successfully implemented this design on several Xilinx UltraScale and UltraScale+ FPGAs with modest utilization. We show that a 4-core implementation is possible with just 1.93 $W$ of total power consumption, which for the first time enables true fault-tolerance for very small spacecraft such as CubeSats. For critical space missions aboard heavier satellites, we implemented an MPSoC-variant for the space-grade XQRKU060 part together with the Xilinx Radiation Testing Consortium. The MPSoC was developed for a 4-year ESA project. It can satisfy the high performance requirements of future scientific and commercial space missions at low cost while offering the strong fault-coverage necessary for platform control for missions with a long duration.","PeriodicalId":415648,"journal":{"name":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2019.8875417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present the implementation of a fault-tolerant MP-SoC for very small satellites (<100kg) based upon commercial components and library IP. This MPSoC is the result of a codesign process and is designed as an ideal platform for software-implemented fault-tolerance measures. It enforces strong isolation between processors, and combines fault-tolerance measures across the embedded stack within an FPGA. This allows us to assure robustness for a satellite on-board computer consisting of modern semiconductors manufactured in fine technology nodes, for which traditional fault-tolerance concepts are ineffective. We successfully implemented this design on several Xilinx UltraScale and UltraScale+ FPGAs with modest utilization. We show that a 4-core implementation is possible with just 1.93 $W$ of total power consumption, which for the first time enables true fault-tolerance for very small spacecraft such as CubeSats. For critical space missions aboard heavier satellites, we implemented an MPSoC-variant for the space-grade XQRKU060 part together with the Xilinx Radiation Testing Consortium. The MPSoC was developed for a 4-year ESA project. It can satisfy the high performance requirements of future scientific and commercial space missions at low cost while offering the strong fault-coverage necessary for platform control for missions with a long duration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于立方体卫星的容错MPSoC
我们提出了一种基于商业组件和库IP的用于非常小的卫星(<100kg)的容错MP-SoC的实现。该MPSoC是协同设计过程的结果,被设计为软件实现容错措施的理想平台。它加强了处理器之间的强隔离,并结合了FPGA内跨嵌入式堆栈的容错措施。这使我们能够确保由精细技术节点制造的现代半导体组成的卫星机载计算机的鲁棒性,而传统的容错概念对于这些计算机是无效的。我们成功地在多个Xilinx UltraScale和UltraScale+ fpga上实现了该设计,利用率适中。我们展示了一个4核的实现是可能的,只有1.93美元的总功耗,这是第一次实现真正的容错非常小的航天器,如立方体卫星。对于重型卫星上的关键空间任务,我们与赛灵思辐射测试联盟一起为空间级XQRKU060部件实施了mpsoc变体。MPSoC是为一个为期4年的ESA项目开发的。它可以以低成本满足未来科学和商业空间任务的高性能要求,同时为长时间任务的平台控制提供必要的强故障覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rebooting Computing: The Challenges for Test and Reliability A Comprehensive Evaluation of the Effects of Input Data on the Resilience of GPU Applications On the Criticality of Caches in Fault-Tolerant Processors for Space On-line Testing for Autonomous Systems driven by RISC-V Processor Design Verification Understanding of GPU Architectural Vulnerability for Deep Learning Workloads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1