Fawzi Khattar, F. Dornaika, F. Luthon, B. Larroque
{"title":"Quadcopter control using onboard monocular camera for enriching remote laboratory facilities","authors":"Fawzi Khattar, F. Dornaika, F. Luthon, B. Larroque","doi":"10.1109/AQTR.2018.8402730","DOIUrl":null,"url":null,"abstract":"We present the implementation of a visual localization and control system of a low cost quadcopter for an application in a remote electronic laboratory. The issues addressed are: environment exploration in remote laboratories, autonomous visual inspection of planar objects, and autonomous homing and landing. The localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the first system by allowing close range inspection of a planar electrical instrument and autonomous landing. Experiments conducted in a remote laboratory workspace are presented. They prove the performance of the proposed system in terms of real-time and robustness.","PeriodicalId":145620,"journal":{"name":"International Conference on Automation, Quality and Testing, Robotics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2018.8402730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present the implementation of a visual localization and control system of a low cost quadcopter for an application in a remote electronic laboratory. The issues addressed are: environment exploration in remote laboratories, autonomous visual inspection of planar objects, and autonomous homing and landing. The localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the first system by allowing close range inspection of a planar electrical instrument and autonomous landing. Experiments conducted in a remote laboratory workspace are presented. They prove the performance of the proposed system in terms of real-time and robustness.