A Pulsed Low-Voltage Swing Latch for Reduced Power Dissipation in High-Frequency Microprocessors

P. Lu, N. Cao, L. Sigal, P. Woltgens, R. Robertazzi, D. Heidel
{"title":"A Pulsed Low-Voltage Swing Latch for Reduced Power Dissipation in High-Frequency Microprocessors","authors":"P. Lu, N. Cao, L. Sigal, P. Woltgens, R. Robertazzi, D. Heidel","doi":"10.1145/1165573.1165593","DOIUrl":null,"url":null,"abstract":"We have reported previously (Pong-Fei Lu et al., 2004) a low-swing latch (LSL) with superior performance-power tradeoff compared to the conventional pass-gate master-slave latch. In this paper, hardware results are presented for the proposed LSL with pulsed clock waveforms. The motivation is to combine low-voltage swing with pulsed signals to further reduce overall system power in high-frequency microprocessors. We have designed a 65-bit accumulator loop experiment to mimic a microprocessor pipeline stage. The local clock buffer design features a mode switch to toggle between two-phase (c1/c2) master-slave clocking and one-phase pulsed (c2 only) clocking. Our data show that 15-25% system power saving can be achieved in pulsed mode compared to non-pulsed mode. Power contribution from individual components is also presented","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We have reported previously (Pong-Fei Lu et al., 2004) a low-swing latch (LSL) with superior performance-power tradeoff compared to the conventional pass-gate master-slave latch. In this paper, hardware results are presented for the proposed LSL with pulsed clock waveforms. The motivation is to combine low-voltage swing with pulsed signals to further reduce overall system power in high-frequency microprocessors. We have designed a 65-bit accumulator loop experiment to mimic a microprocessor pipeline stage. The local clock buffer design features a mode switch to toggle between two-phase (c1/c2) master-slave clocking and one-phase pulsed (c2 only) clocking. Our data show that 15-25% system power saving can be achieved in pulsed mode compared to non-pulsed mode. Power contribution from individual components is also presented
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于降低高频微处理器功耗的脉冲低压摆锁存器
我们之前报道过(Pong-Fei Lu et al., 2004)一种低摆幅锁存器(LSL),与传统的通闸主从锁存器相比,具有优越的性能-功率权衡。本文给出了采用脉冲时钟波形的LSL的硬件结果。其动机是将低压摆幅与脉冲信号相结合,以进一步降低高频微处理器的整体系统功率。我们设计了一个65位累加器环路实验来模拟微处理器流水线阶段。本地时钟缓冲器设计的特点是模式切换,可以在两相(c1/c2)主从时钟和单相脉冲(仅c2)时钟之间切换。我们的数据表明,与非脉冲模式相比,脉冲模式可以节省15-25%的系统功率。同时给出了各个部件的功率贡献
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Dynamic Power Cutoff Technique (DPCT) for Active Leakage Reduction in Deep Submicron CMOS Circuits Dynamic Thermal Clock Skew Compensation using Tunable Delay Buffers Power Reduction in an H.264 Encoder Through Algorithmic and Logic Transformations An Efficient Chip-level Time Slack Allocation Algorithm for Dual-Vdd FPGA Power Reduction Energy-efficient Motion Estimation using Error-Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1