An Efficient Near-lossless Compression Algorithm for Multichannel EEG signals

G. Campobello, Angelica Quercia, G. Gugliandolo, Antonino Segreto, E. Tatti, M. Ghilardi, G. Crupi, A. Quartarone, N. Donato
{"title":"An Efficient Near-lossless Compression Algorithm for Multichannel EEG signals","authors":"G. Campobello, Angelica Quercia, G. Gugliandolo, Antonino Segreto, E. Tatti, M. Ghilardi, G. Crupi, A. Quartarone, N. Donato","doi":"10.1109/MeMeA52024.2021.9478756","DOIUrl":null,"url":null,"abstract":"In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless compression algorithm for EEG signals able to achieve a compression ratio in the order of 10 with a root-mean-square distortion less than 0.01%. The proposed algorithm exploits the fact that Principal Component Analysis is usually performed on EEG signals for denoising and removing unwanted artifacts. In this particular context, we can consider this algorithm as a good tool to ensure the best information of the signal beside an efficient compression ratio, reducing the amount of memory necessary to record data.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless compression algorithm for EEG signals able to achieve a compression ratio in the order of 10 with a root-mean-square distortion less than 0.01%. The proposed algorithm exploits the fact that Principal Component Analysis is usually performed on EEG signals for denoising and removing unwanted artifacts. In this particular context, we can consider this algorithm as a good tool to ensure the best information of the signal beside an efficient compression ratio, reducing the amount of memory necessary to record data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效的多通道脑电信号近无损压缩算法
在许多生物医学测量程序中,记录大量数据以监测受试者的健康状况是很重要的。在这种情况下,脑电图(EEG)数据在大小和信号行为方面是最苛刻的。在本文中,我们提出了一种脑电图信号的近无损压缩算法,能够实现10数量级的压缩比,均方根失真小于0.01%。该算法利用了通常对脑电信号进行主成分分析的事实来去噪和去除不需要的伪影。在这种特殊情况下,我们可以认为该算法是一个很好的工具,可以确保信号的最佳信息,以及有效的压缩比,减少记录数据所需的内存量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML algorithms for the assessment of prescribed physical exercises Measuring the Effect of Rhythmic Auditory Stimuli on Parkinsonian Gait in Challenging Settings A preliminary study on the dynamic characterization of a MEMS microgripper for biomedical applications Gait Parameters of Elderly Subjects in Single-task and Dual-task with three different MIMU set-ups The use of cognitive training and tDCS for the treatment of an high potential subject: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1