Kangming Weng, X. Du, Kunze Chen, Dahan Wang, Shunzhi Zhu
{"title":"ResAsapp: An Effective Convolution to Distinguish Adjacent Pixels For Scene Text Detection","authors":"Kangming Weng, X. Du, Kunze Chen, Dahan Wang, Shunzhi Zhu","doi":"10.1145/3581807.3581854","DOIUrl":null,"url":null,"abstract":"The segmentation-based approach is an essential direction of scene text detection, and it can detect arbitrary or curved text, which has attracted the increasing attention of many researchers. However, extensive research has shown that the segmentation-based method will be disturbed by adjoining pixels and cannot effectively identify the text boundaries. To tackle this problem, we proposed a ResAsapp Conv based on the PSE algorithm. This convolution structure can provide different scale visual fields about the object and make it effectively recognize the boundary of texts. The method's effectiveness is validated on three benchmark datasets, CTW1500, Total-Text, and ICDAR2015 datasets. In particular, on the CTW1500 dataset, a dataset full of long curve text in all kinds of scenes, which is hard to distinguish, our network achieves an F-measure of 81.2%.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation-based approach is an essential direction of scene text detection, and it can detect arbitrary or curved text, which has attracted the increasing attention of many researchers. However, extensive research has shown that the segmentation-based method will be disturbed by adjoining pixels and cannot effectively identify the text boundaries. To tackle this problem, we proposed a ResAsapp Conv based on the PSE algorithm. This convolution structure can provide different scale visual fields about the object and make it effectively recognize the boundary of texts. The method's effectiveness is validated on three benchmark datasets, CTW1500, Total-Text, and ICDAR2015 datasets. In particular, on the CTW1500 dataset, a dataset full of long curve text in all kinds of scenes, which is hard to distinguish, our network achieves an F-measure of 81.2%.