A new fine grained inertia weight Particle Swarm Optimization

Kusum Deep, Pinkey Chauhan, M. Pant
{"title":"A new fine grained inertia weight Particle Swarm Optimization","authors":"Kusum Deep, Pinkey Chauhan, M. Pant","doi":"10.1109/WICT.2011.6141283","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO), analogous to behaviour of bird flocks and fish schools, has emerged as an efficient global optimizer for solving nonlinear and complex real world problems. The performance of PSO depends on its parameters to a great extent. Among all other parameters of PSO, Inertia weight is crucial one that affects the performance of PSO significantly and therefore needs a special attention to be chosen appropriately. This paper proposes an adaptive exponentially decreasing inertia weight that depends on particle's performance iteration-wise and is different for each particle. The corresponding variant is termed as Fine Grained Inertia Weight PSO (FGIWPSO). The new inertia weight is proposed to improve the diversity of the swarm in order to avoid the stagnation phenomenon and a speeding convergence to global optima. The effectiveness of proposed approach is demonstrated by testing it on a suit of ten benchmark functions. The proposed FGIWPSO is compared with two existing PSO variants having nonlinear and exponential inertia weight strategies respectively. Experimental results assert that the proposed modification helps in improving PSO performance in terms of solution quality and convergence rate as well.","PeriodicalId":178645,"journal":{"name":"2011 World Congress on Information and Communication Technologies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2011.6141283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Particle Swarm Optimization (PSO), analogous to behaviour of bird flocks and fish schools, has emerged as an efficient global optimizer for solving nonlinear and complex real world problems. The performance of PSO depends on its parameters to a great extent. Among all other parameters of PSO, Inertia weight is crucial one that affects the performance of PSO significantly and therefore needs a special attention to be chosen appropriately. This paper proposes an adaptive exponentially decreasing inertia weight that depends on particle's performance iteration-wise and is different for each particle. The corresponding variant is termed as Fine Grained Inertia Weight PSO (FGIWPSO). The new inertia weight is proposed to improve the diversity of the swarm in order to avoid the stagnation phenomenon and a speeding convergence to global optima. The effectiveness of proposed approach is demonstrated by testing it on a suit of ten benchmark functions. The proposed FGIWPSO is compared with two existing PSO variants having nonlinear and exponential inertia weight strategies respectively. Experimental results assert that the proposed modification helps in improving PSO performance in terms of solution quality and convergence rate as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的细粒度惯性权值粒子群算法
粒子群优化算法(PSO)类似于鸟群和鱼群的行为,已成为解决非线性和复杂现实世界问题的有效全局优化算法。粒子群的性能在很大程度上取决于其参数。在粒子群的众多参数中,惯性权重是影响粒子群性能的关键参数,需要特别注意选择。本文提出了一种自适应指数递减的惯性权值,该权值取决于粒子的性能迭代,且每个粒子的惯性权值不同。相应的变体称为细粒度惯性权重粒子群(FGIWPSO)。提出了一种新的惯性权值,以提高群的多样性,避免了群的停滞现象和加速收敛到全局最优。通过对一组10个基准函数的测试,证明了该方法的有效性。将所提出的FGIWPSO分别与具有非线性和指数惯性权重策略的两种现有PSO进行了比较。实验结果表明,改进后的粒子群算法在求解质量和收敛速度方面均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud based model for senior citizens wellness management Application of genetic algorithm on quality graded networks for intelligent routing Role of ICT in the educational upliftment of women - Indian scenario Code clones in program test sequence identification An impact of ridgelet transform in handwritten recognition: A study on very large dataset of Kannada script
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1