Electroporation Modelling of Irregularly Nucleated Cell With Perinuclear Space

L. Mescia, P. Bia, C. Lamacchia, M. A. Chiapperino, A. Miani
{"title":"Electroporation Modelling of Irregularly Nucleated Cell With Perinuclear Space","authors":"L. Mescia, P. Bia, C. Lamacchia, M. A. Chiapperino, A. Miani","doi":"10.1109/IMBIoC47321.2020.9385010","DOIUrl":null,"url":null,"abstract":"Electroporation technique is based on the perturbation of the cell membrane through the application of high-voltage electric pulses of short duration. In this paper, a non–linear dispersive model of the electroporation process in irregularly nucleated shaped cells is presented. In particular, the nuclear envelope was modeled as two lipid membranes separated by a perinuclear space. The dispersive properties of biological media was taken into account using a Debye–based relationship. The Multiphysics model solves simultaneously the Maxwell equations, the Smoluchowski equation, describing the creation and closure of pores, and the equations describing the temporal evolution of pore radius.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIoC47321.2020.9385010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electroporation technique is based on the perturbation of the cell membrane through the application of high-voltage electric pulses of short duration. In this paper, a non–linear dispersive model of the electroporation process in irregularly nucleated shaped cells is presented. In particular, the nuclear envelope was modeled as two lipid membranes separated by a perinuclear space. The dispersive properties of biological media was taken into account using a Debye–based relationship. The Multiphysics model solves simultaneously the Maxwell equations, the Smoluchowski equation, describing the creation and closure of pores, and the equations describing the temporal evolution of pore radius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有核周间隙的不规则有核细胞的电穿孔模拟
电穿孔技术是通过施加短时间高压电脉冲对细胞膜进行扰动的技术。本文提出了不规则核状细胞中电穿孔过程的非线性色散模型。特别是,核膜被模拟为两个由核周围空间隔开的脂质膜。采用基于德拜的关系考虑了生物介质的分散特性。Multiphysics模型同时求解描述孔隙形成和闭合的Maxwell方程、Smoluchowski方程和描述孔隙半径时间演化的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Water Dependent Tissue Dielectric Model for Estimation of in-vivo Dielectric Properties Comparative Study of Tissue-Mimicking Phantoms for Microwave Breast Cancer Screening Systems Microwave-Based Sensor Dedicated to the Characterization of Meat Freshness Biosensor Based on a Resonant Technique for Aqueous Glucose Monitoring Using Standardized Medical Test Tubes Comparison of two global optimization techniques for hyperthermia treatment planning of breast cancer: Coupled electromagnetic and thermal simulation study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1