{"title":"Numerical Investigation on Effects of Structure Parameters on Acceleration Noise of Involute Spur Gear System Under Different Operation Conditions","authors":"Changyin Wei, Jingang Wang, Hai Liu, Yong Chen, Kunqi Ma, Hanzhengnan Yu","doi":"10.1115/IMECE2018-86955","DOIUrl":null,"url":null,"abstract":"The involute spur gear system has been widely utilized in the mechanical transmission domain, and the control of the acceleration noise of the involute spur gear system has become the key technology to solve the NVH performance of the power transmission system, especially in the automobile industry. In the process of the gear meshing, the unavoidable acceleration noise of the involute spur gear system is mainly caused by the meshing stiffness and error excitation due to the structural parameters. Therefore, the investigation on the effects of structure parameters on acceleration noise of the involute spur gear system is necessary.\n In this paper, the numerical model for predicting the acceleration noise of the involute spur gear system has been established. The simulation results of the acceleration noise were compared with the experimental results, and the errors between these two results were only 2.9%, within permission.\n The effects of structure parameters including base pitch error and pressure angle on the acceleration noise of the involute spur gear system have been discussed. Results showed that increasing the base pitch error, the acceleration noise level of the involute spur gear increased, and the gap of the noise level between different base pitch errors narrowed according to the increase of gear load and rotation speed. Increasing the pressure angle also increased the acceleration noise level, however, the gap between different pressure angles remained the same regardless the variations of gear load and rotation speed, which was different than the variations of base pitch error.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The involute spur gear system has been widely utilized in the mechanical transmission domain, and the control of the acceleration noise of the involute spur gear system has become the key technology to solve the NVH performance of the power transmission system, especially in the automobile industry. In the process of the gear meshing, the unavoidable acceleration noise of the involute spur gear system is mainly caused by the meshing stiffness and error excitation due to the structural parameters. Therefore, the investigation on the effects of structure parameters on acceleration noise of the involute spur gear system is necessary.
In this paper, the numerical model for predicting the acceleration noise of the involute spur gear system has been established. The simulation results of the acceleration noise were compared with the experimental results, and the errors between these two results were only 2.9%, within permission.
The effects of structure parameters including base pitch error and pressure angle on the acceleration noise of the involute spur gear system have been discussed. Results showed that increasing the base pitch error, the acceleration noise level of the involute spur gear increased, and the gap of the noise level between different base pitch errors narrowed according to the increase of gear load and rotation speed. Increasing the pressure angle also increased the acceleration noise level, however, the gap between different pressure angles remained the same regardless the variations of gear load and rotation speed, which was different than the variations of base pitch error.