Satellite Image Fusion Based on Improved Fast Discrete Curvelet Transforms

K. Jemseera, P. Noufal
{"title":"Satellite Image Fusion Based on Improved Fast Discrete Curvelet Transforms","authors":"K. Jemseera, P. Noufal","doi":"10.1109/ICACC.2015.30","DOIUrl":null,"url":null,"abstract":"Image fusion is the process of merging two or more images into a more informative single image. Satellite image fusion uses high resolution panchromatic image and low resolution multispectral image. IHS, Brovery, PCA, Wavelet, Curvelet etc are the existing techniques available for image fusion. But simultaneous retention of spatial and spectral resolution is an important concern in remote sensing applications. In this paper we proposed an improved Satellite image fusion method based on Fast Discrete curvelet Transform (FDCT) via wrapping. The method uses an improved fusion rule, were the maximum FDCT coefficients from each cell of the Intensity component of the MS image and histogram matched PAN image are taken. The resulting image is then undergone a comparative analysis with the outcomes of existing methodologies. The comparative analysis proves that the proposed method retains more spatial and spectral details than other methods.","PeriodicalId":368544,"journal":{"name":"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Advances in Computing and Communications (ICACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2015.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image fusion is the process of merging two or more images into a more informative single image. Satellite image fusion uses high resolution panchromatic image and low resolution multispectral image. IHS, Brovery, PCA, Wavelet, Curvelet etc are the existing techniques available for image fusion. But simultaneous retention of spatial and spectral resolution is an important concern in remote sensing applications. In this paper we proposed an improved Satellite image fusion method based on Fast Discrete curvelet Transform (FDCT) via wrapping. The method uses an improved fusion rule, were the maximum FDCT coefficients from each cell of the Intensity component of the MS image and histogram matched PAN image are taken. The resulting image is then undergone a comparative analysis with the outcomes of existing methodologies. The comparative analysis proves that the proposed method retains more spatial and spectral details than other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进快速离散曲线变换的卫星图像融合
图像融合是将两个或多个图像合并成一个信息更丰富的单个图像的过程。卫星图像融合采用高分辨率全色图像和低分辨率多光谱图像。IHS、Brovery、PCA、Wavelet、Curvelet等是现有的图像融合技术。但同时保持空间和光谱分辨率是遥感应用中的一个重要问题。本文提出了一种改进的基于快速离散曲线变换(FDCT)的卫星图像包裹融合方法。该方法采用改进的融合规则,从MS图像和PAN图像的直方图匹配中提取强度分量的每个单元的最大FDCT系数。然后将得到的图像与现有方法的结果进行比较分析。对比分析表明,该方法比其他方法保留了更多的空间和光谱细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of NTCIP in Road Traffic Controllers for Traffic Signal Coordination AutoScaling of VM in Private And Public Cloud Environment with Debt Assessment Fuzzy Cautious Adaptive Random Early Detection for Heterogeneous Network Enhancing the Accuracy of Movie Recommendation System Based on Probabilistic Data Structure and Graph Database Compact Band Notched UWB Filter for Wireless Communication Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1