Convex combination of quantized kernel least mean square algorithm

Yunfei Zheng, Shiyuan Wang, Yali Feng, Wenjie Zhang, Qingan Yang
{"title":"Convex combination of quantized kernel least mean square algorithm","authors":"Yunfei Zheng, Shiyuan Wang, Yali Feng, Wenjie Zhang, Qingan Yang","doi":"10.1109/ICICIP.2015.7388166","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an new kernel adaptive filter, namely convex combination of quantized kernel least mean square algorithm (CC-QKLMS). By applying the convex combination idea to QKLMS, the CC-QKLMS takes the kernel sizes as the combined variables, which can achieve a fast convergence rate and a low steady-state mean-square error (MSE). In addition, since the quantization method is incorporated in CC-QKLMS, a linear growing network structure is naturally avoided. Simulation results on channel equalization validate the better performance of the CC-QKLMS in terms of the convergence rate and steady-state MSE.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an new kernel adaptive filter, namely convex combination of quantized kernel least mean square algorithm (CC-QKLMS). By applying the convex combination idea to QKLMS, the CC-QKLMS takes the kernel sizes as the combined variables, which can achieve a fast convergence rate and a low steady-state mean-square error (MSE). In addition, since the quantization method is incorporated in CC-QKLMS, a linear growing network structure is naturally avoided. Simulation results on channel equalization validate the better performance of the CC-QKLMS in terms of the convergence rate and steady-state MSE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凸组合量化核最小均方算法
本文提出了一种新的核自适应滤波器,即凸组合量化核最小均方算法(CC-QKLMS)。将凸组合思想应用到QKLMS中,CC-QKLMS以核大小作为组合变量,具有较快的收敛速度和较低的稳态均方误差。此外,由于量化方法被纳入CC-QKLMS,自然避免了线性增长的网络结构。信道均衡的仿真结果验证了CC-QKLMS在收敛速率和稳态MSE方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1