C. Jung, B. Thomas, C. Lee, A. Peralta, J. Gill, K. Cooper, G. Chattopadhyay, E. Schlecht, R. Lin, I. Mehdi
{"title":"Compact submillimeter-wave receivers made with semiconductor nano-fabrication technologies","authors":"C. Jung, B. Thomas, C. Lee, A. Peralta, J. Gill, K. Cooper, G. Chattopadhyay, E. Schlecht, R. Lin, I. Mehdi","doi":"10.1109/MWSYM.2011.5972898","DOIUrl":null,"url":null,"abstract":"Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1° precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.","PeriodicalId":294862,"journal":{"name":"2011 IEEE MTT-S International Microwave Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2011.5972898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1° precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.