A partial analysis of stochastic convergence in a generalized two-layer perceptron with backpropagation learning

J. L. Vaughn, N. Bershad, J. Shynk
{"title":"A partial analysis of stochastic convergence in a generalized two-layer perceptron with backpropagation learning","authors":"J. L. Vaughn, N. Bershad, J. Shynk","doi":"10.1109/NNSP.1992.253660","DOIUrl":null,"url":null,"abstract":"The authors study the stationary points of a two-layer perceptron which attempts to identify the parameters of a specific stochastic nonlinear system. The training sequence is modeled as the output of the nonlinear system, with an input comprising an independent sequence of zero mean Gaussian vectors with independent components. The training rule is a limiting case of backpropagation (to simplify the analysis). Equations are given which define the stationary points of the algorithm for an arbitrary output nonlinearity g(x). The solutions to these equations for the outer layer show that, for a continuous g(x), there is a unique solution for the outer layer weights for any given set of fixed hidden layer weights. These solutions do not necessarily yield zero error. However, if the hidden layer weights are also trained, the unique solution for zero error requires that the parameters of the two-layer perceptron exactly match that of the nonlinear system.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors study the stationary points of a two-layer perceptron which attempts to identify the parameters of a specific stochastic nonlinear system. The training sequence is modeled as the output of the nonlinear system, with an input comprising an independent sequence of zero mean Gaussian vectors with independent components. The training rule is a limiting case of backpropagation (to simplify the analysis). Equations are given which define the stationary points of the algorithm for an arbitrary output nonlinearity g(x). The solutions to these equations for the outer layer show that, for a continuous g(x), there is a unique solution for the outer layer weights for any given set of fixed hidden layer weights. These solutions do not necessarily yield zero error. However, if the hidden layer weights are also trained, the unique solution for zero error requires that the parameters of the two-layer perceptron exactly match that of the nonlinear system.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有反向传播学习的广义两层感知器随机收敛性的部分分析
本文研究了一种二层感知器的平稳点,该感知器试图识别一个特定的随机非线性系统的参数。训练序列被建模为非线性系统的输出,输入由具有独立分量的零均值高斯向量的独立序列组成。训练规则是反向传播的极限情况(为了简化分析)。对于任意输出非线性g(x),给出了该算法的平稳点的定义方程。这些方程的外层解表明,对于连续的g(x),对于任何给定的固定隐层权值集合,外层权值存在唯一解。这些解决方案不一定产生零错误。然而,如果隐藏层权重也被训练,零误差的唯一解要求两层感知器的参数与非线性系统的参数完全匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete neural networks and fingerprint identification A fast simulator for neural networks on DSPs or FPGAs Hierarchical perceptron (HiPer) networks for signal/image classifications Adaptive decision-feedback equalizer using forward-only counterpropagation networks for Rayleigh fading channels An efficient model for systems with complex responses (neural network architecture for nonlinear filtering)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1