Software Defect Prediction Using AWEIG+ADACOST Bayesian Algorithm for Handling High Dimensional Data and Class Imbalance Problem

Joko Suntoro, Febrian Wahyu Christanto, Henny Indriyawati
{"title":"Software Defect Prediction Using AWEIG+ADACOST Bayesian Algorithm for Handling High Dimensional Data and Class Imbalance Problem","authors":"Joko Suntoro, Febrian Wahyu Christanto, Henny Indriyawati","doi":"10.24246/IJITEB.112018.36-41","DOIUrl":null,"url":null,"abstract":"The most important part in software engineering is a software defect prediction. Software defect prediction is defined as a software prediction process from errors, failures, and system errors. Machine learning methods are used by researchers to predict software defects including estimation, association, classification, clustering, and datasets analysis. Datasets of NASA Metrics Data Program (NASA MDP) is one of the metric software that researchers use to predict software defects. NASA MDP datasets contain unbalanced classes and high dimensional data, so they will affect the classification evaluation results to be low. In this research, data with unbalanced classes will be solved by the AdaCost method and high dimensional data will be handled with the Average Weight Information Gain (AWEIG) method, while the classification method that will be used is the Naïve Bayes algorithm. The proposed method is named AWEIG + AdaCost Bayesian. In this experiment, the AWEIG + AdaCost Bayesian algorithm is compared to the Naïve Bayesian algorithm. The results showed the mean of Area Under the Curve (AUC) algorithm AWEIG + AdaCost Bayesian yields better than just a Naïve Bayes algorithm with respectively mean of AUC values are 0.752 and 0.696.","PeriodicalId":249381,"journal":{"name":"International Journal of Information Technology and Business","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24246/IJITEB.112018.36-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The most important part in software engineering is a software defect prediction. Software defect prediction is defined as a software prediction process from errors, failures, and system errors. Machine learning methods are used by researchers to predict software defects including estimation, association, classification, clustering, and datasets analysis. Datasets of NASA Metrics Data Program (NASA MDP) is one of the metric software that researchers use to predict software defects. NASA MDP datasets contain unbalanced classes and high dimensional data, so they will affect the classification evaluation results to be low. In this research, data with unbalanced classes will be solved by the AdaCost method and high dimensional data will be handled with the Average Weight Information Gain (AWEIG) method, while the classification method that will be used is the Naïve Bayes algorithm. The proposed method is named AWEIG + AdaCost Bayesian. In this experiment, the AWEIG + AdaCost Bayesian algorithm is compared to the Naïve Bayesian algorithm. The results showed the mean of Area Under the Curve (AUC) algorithm AWEIG + AdaCost Bayesian yields better than just a Naïve Bayes algorithm with respectively mean of AUC values are 0.752 and 0.696.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AWEIG+ADACOST贝叶斯算法的高维数据和类不平衡问题软件缺陷预测
软件工程中最重要的部分是软件缺陷预测。软件缺陷预测被定义为错误、故障和系统错误的软件预测过程。研究人员使用机器学习方法来预测软件缺陷,包括估计、关联、分类、聚类和数据集分析。NASA Metrics Data Program (NASA MDP)的数据集是研究人员用来预测软件缺陷的度量软件之一。NASA MDP数据集包含不平衡类和高维数据,因此会影响分类评价结果低。在本研究中,类不平衡的数据将使用AdaCost方法求解,高维数据将使用平均权重信息增益(Average Weight Information Gain, AWEIG)方法处理,而分类方法将使用Naïve Bayes算法。该方法被命名为AWEIG + AdaCost贝叶斯。本实验将AWEIG + AdaCost贝叶斯算法与Naïve贝叶斯算法进行对比。结果表明,AWEIG + AdaCost贝叶斯算法的AUC均值分别为0.752和0.696,优于单纯的Naïve贝叶斯算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Closed Beta Testing on Filariasis Treatment Monitoring Applications New Design of Encryption with Covertext and Reordering Artificial Intelligence Powered Chatbot for Business Data Mining Modeling Feasibility Patterns of Graduates Ability With Stakeholder Needs Using Apriori Algorithm Improving Batik and Dropship SMEs Market Through Geographic Information System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1