Integration of Photovoltaic System in Low Voltage Electrical Network of the Electrical Engineering Building

A. Parrado-Duque, Rusber Rodríguez-Velásquez, G. Osma-Pinto, G. Ordóñez-Plata
{"title":"Integration of Photovoltaic System in Low Voltage Electrical Network of the Electrical Engineering Building","authors":"A. Parrado-Duque, Rusber Rodríguez-Velásquez, G. Osma-Pinto, G. Ordóñez-Plata","doi":"10.1109/PEPQA.2019.8851564","DOIUrl":null,"url":null,"abstract":"The quantification of the impacts of photovoltaic system (PV) integration in the low voltage (LV) power grid is necessary for the historical evaluation of the electrical network with and without PV penetration. This paper presents the study case of the LV electrical network of a university building (Colombia), which has a 9.1 kW PV system. Specifically, the electrical variables monitored were voltages (V), frequency (f), active power (W), voltage distortion (THDv), and harmonics at the Point of Common Coupling (PCC), to determine impairments according to Std. IEEE 1547-2018. PV systems could change the RMS value of voltage at the PCC, therefore, this variable was analysed. Likewise, the frequency was analysed to corroborate the no affectation of the interconnection of the PV system to the electrical network; it is due to the absence of rotational inertia. The solar irradiation information was measured by a pyranometer and the electrical variables by an smart meter, recording the information every 10 minutes for 32 days. The above is an initial step for a comprehensive evaluation of electrical variables with PV generation and future integration of parameters for the resilience evaluation of the electric network.","PeriodicalId":192905,"journal":{"name":"2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEPQA.2019.8851564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The quantification of the impacts of photovoltaic system (PV) integration in the low voltage (LV) power grid is necessary for the historical evaluation of the electrical network with and without PV penetration. This paper presents the study case of the LV electrical network of a university building (Colombia), which has a 9.1 kW PV system. Specifically, the electrical variables monitored were voltages (V), frequency (f), active power (W), voltage distortion (THDv), and harmonics at the Point of Common Coupling (PCC), to determine impairments according to Std. IEEE 1547-2018. PV systems could change the RMS value of voltage at the PCC, therefore, this variable was analysed. Likewise, the frequency was analysed to corroborate the no affectation of the interconnection of the PV system to the electrical network; it is due to the absence of rotational inertia. The solar irradiation information was measured by a pyranometer and the electrical variables by an smart meter, recording the information every 10 minutes for 32 days. The above is an initial step for a comprehensive evaluation of electrical variables with PV generation and future integration of parameters for the resilience evaluation of the electric network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏系统在电气工程大楼低压电网中的集成
量化光伏系统入网对低压电网的影响是对有光伏系统入网和无光伏系统入网进行历史评价的必要条件。本文介绍了哥伦比亚某大学建筑低压电网的研究案例,该建筑拥有9.1 kW的光伏系统。具体来说,监测的电气变量是电压(V)、频率(f)、有功功率(W)、电压失真(THDv)和共耦合点(PCC)的谐波,以根据标准IEEE 1547-2018确定损伤。PV系统可以改变PCC电压的均方根值,因此,对该变量进行了分析。同样,对频率进行了分析,以证实光伏系统与电网的互连没有影响;这是由于没有转动惯量。太阳辐照信息由太阳辐射计测量,电变量由智能电表测量,每10分钟记录一次,连续32天。以上是对光伏发电的电力变量进行综合评估的第一步,也是未来电网弹性评估参数整合的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A current controller for a grid-tied, cascade multilevel inverter Integration of Photovoltaic System in Low Voltage Electrical Network of the Electrical Engineering Building Experimental Magnetization Curve of a Transformer Considering Harmonic Distortion Evolving the Next Generation of Distribution Analysis Tools PMU and PDC server implementation integrated to real-time simulation tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1