Removing snow from an image via image decomposition

D. Rajderkar, P. Mohod
{"title":"Removing snow from an image via image decomposition","authors":"D. Rajderkar, P. Mohod","doi":"10.1109/ICE-CCN.2013.6528565","DOIUrl":null,"url":null,"abstract":"Snowfall removal from an image is a challenging problem. In this paper, we propose a snowfall removal framework via image decomposition based on Morphological component analysis. The proposed methods first decompose an image into low frequency (LF) and high frequency (HF) parts using bilateral filter. The high frequency part is then decomposing into “snow component” and “non snow component” by performing dictionary learning and sparse coding.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Snowfall removal from an image is a challenging problem. In this paper, we propose a snowfall removal framework via image decomposition based on Morphological component analysis. The proposed methods first decompose an image into low frequency (LF) and high frequency (HF) parts using bilateral filter. The high frequency part is then decomposing into “snow component” and “non snow component” by performing dictionary learning and sparse coding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过图像分解从图像中去除雪
从图像中去除降雪是一个具有挑战性的问题。本文提出了一种基于形态成分分析的图像分解降雪图框架。该方法首先利用双边滤波将图像分解为低频部分和高频部分。然后通过字典学习和稀疏编码将高频部分分解为“雪分量”和“非雪分量”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removing snow from an image via image decomposition Maximum a posteriori adaptation method for video semantic indexing Low power 8×8 Sum of Absolute Difference engine for Motion Estimation in video compression A modified preamble structure based carrier frequency offset (CFO) and phase noise compensation in an OFDM system Multiple learning based classifiers using layered approach and Feature Selection for attack detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1