Efficient Similarity Based Methods For The Playlist Continuation Task

G. Faggioli, Mirko Polato, F. Aiolli
{"title":"Efficient Similarity Based Methods For The Playlist Continuation Task","authors":"G. Faggioli, Mirko Polato, F. Aiolli","doi":"10.1145/3267471.3267486","DOIUrl":null,"url":null,"abstract":"In this paper, the pipeline we used in the RecSys challenge 2018 is reported. We present content-based and collaborative filtering approaches for the definition of the similarity matrices for top-500 recommendation task. In particular, the task consisted in recommending songs to add to partial playlists. Different methods have been proposed depending on the number of available songs in a playlist. We show how an hybrid approach which exploits both content-based and collaborative filtering is effective in this task. Specifically, information derived by the playlist titles helped to tackle the cold-start issue.","PeriodicalId":430663,"journal":{"name":"Proceedings of the ACM Recommender Systems Challenge 2018","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Recommender Systems Challenge 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3267471.3267486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, the pipeline we used in the RecSys challenge 2018 is reported. We present content-based and collaborative filtering approaches for the definition of the similarity matrices for top-500 recommendation task. In particular, the task consisted in recommending songs to add to partial playlists. Different methods have been proposed depending on the number of available songs in a playlist. We show how an hybrid approach which exploits both content-based and collaborative filtering is effective in this task. Specifically, information derived by the playlist titles helped to tackle the cold-start issue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性的播放列表延续任务的高效方法
本文报告了我们在RecSys挑战2018中使用的管道。我们提出了基于内容和协同过滤的方法来定义500强推荐任务的相似度矩阵。特别是,这项任务包括推荐歌曲添加到部分播放列表中。根据播放列表中可用歌曲的数量,提出了不同的方法。我们将展示利用基于内容的过滤和协作过滤的混合方法如何在此任务中有效。具体来说,由播放列表标题派生的信息有助于解决冷启动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Music Playlist Continuation via Neighbor-based Collaborative Filtering and Discriminative Reweighting/Reranking TrailMix: An Ensemble Recommender System for Playlist Curation and Continuation An Ensemble Approach of Recurrent Neural Networks using Pre-Trained Embeddings for Playlist Completion Artist-driven layering and user's behaviour impact on recommendations in a playlist continuation scenario Efficient Similarity Based Methods For The Playlist Continuation Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1