Multi-App Security Analysis with FUSE: Statically Detecting Android App Collusion

Tristan Ravitch, E. Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott, L. Casburn
{"title":"Multi-App Security Analysis with FUSE: Statically Detecting Android App Collusion","authors":"Tristan Ravitch, E. Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott, L. Casburn","doi":"10.1145/2689702.2689705","DOIUrl":null,"url":null,"abstract":"Android's popularity has given rise to myriad application analysis techniques to improve the security and robustness of mobile applications, motivated by the evolving adversarial landscape. These techniques have focused on identifying undesirable behaviors in individual applications, either due to malicious intent or programmer error. We present a collection of tools that provide a static information flow analysis across a set of applications, showing a holistic view of all the applications destined for a particular device. The techniques we present include a static binary single-app analysis, a security lint tool to mitigate the limits of static binary analysis, a multi-app information flow analysis, and an evaluation engine to detect information flows that violate specified security policies. We show that our single-app analysis is comparable with the leading approaches on the DroidBench benchmark suite; we present a brief listing of lint-like heuristics used to show the limits of the single-app analysis in the context of an application; we present a multi-app analysis, and demonstrate information flows that cannot be detected by single-app analyses; and we present a policy evaluation engine to automatically detect violations in collections of Android apps.","PeriodicalId":308663,"journal":{"name":"Proceedings of the 4th Program Protection and Reverse Engineering Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Program Protection and Reverse Engineering Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2689702.2689705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Android's popularity has given rise to myriad application analysis techniques to improve the security and robustness of mobile applications, motivated by the evolving adversarial landscape. These techniques have focused on identifying undesirable behaviors in individual applications, either due to malicious intent or programmer error. We present a collection of tools that provide a static information flow analysis across a set of applications, showing a holistic view of all the applications destined for a particular device. The techniques we present include a static binary single-app analysis, a security lint tool to mitigate the limits of static binary analysis, a multi-app information flow analysis, and an evaluation engine to detect information flows that violate specified security policies. We show that our single-app analysis is comparable with the leading approaches on the DroidBench benchmark suite; we present a brief listing of lint-like heuristics used to show the limits of the single-app analysis in the context of an application; we present a multi-app analysis, and demonstrate information flows that cannot be detected by single-app analyses; and we present a policy evaluation engine to automatically detect violations in collections of Android apps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FUSE的多应用安全分析:静态检测Android应用合谋
Android的流行已经产生了无数的应用分析技术,以提高移动应用的安全性和健壮性,这是由不断发展的对抗环境所驱动的。这些技术的重点是识别单个应用程序中由于恶意意图或程序员错误而产生的不良行为。我们提供了一组工具,这些工具提供了跨一组应用程序的静态信息流分析,显示了用于特定设备的所有应用程序的整体视图。我们介绍的技术包括静态二进制单应用分析,减轻静态二进制分析限制的安全检测工具,多应用信息流分析,以及检测违反指定安全策略的信息流的评估引擎。我们表明,我们的单应用分析与DroidBench基准套件上的领先方法相当;我们提供了一个类似lint的启发式的简短列表,用于显示单个应用程序分析在应用程序上下文中的局限性;我们提出了一个多应用程序分析,并展示了单应用程序分析无法检测到的信息流;我们提出了一个策略评估引擎来自动检测Android应用程序集合中的违规行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SILK: high level of abstraction leakage simulator for side channel analysis Intellectual Property Protection in Additive Layer Manufacturing: Requirements for Secure Outsourcing Multi-App Security Analysis with FUSE: Statically Detecting Android App Collusion Probing the Limits of Virtualized Software Protection Mixed-Mode Malware and Its Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1