Vasileios Skaramagkas, Emmanouil Ktistakis, D. Manousos, N. Tachos, E. Kazantzaki, E. Tripoliti, D. Fotiadis, M. Tsiknakis
{"title":"Cognitive workload level estimation based on eye tracking: A machine learning approach","authors":"Vasileios Skaramagkas, Emmanouil Ktistakis, D. Manousos, N. Tachos, E. Kazantzaki, E. Tripoliti, D. Fotiadis, M. Tsiknakis","doi":"10.1109/BIBE52308.2021.9635166","DOIUrl":null,"url":null,"abstract":"Cognitive workload is a critical feature in related psychology, ergonomics, and human factors for understanding performance. However, it still is difficult to describe and thus, to measure it. Since there is no single sensor that can give a full understanding of workload, extended research has been conducted in order to present robust biomarkers. During the last years, machine learning techniques have been used to predict cognitive workload based on various features. Gaze extracted features, such as pupil size, blink activity and saccadic measures, have been used as predictors. The aim of this study is to use gaze extracted features as the only predictors of cognitive workload. Two factors were investigated: time pressure and multi tasking. The findings of this study showed that eye and gaze features are useful indicators of cognitive workload levels, reaching up to 88% accuracy.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Cognitive workload is a critical feature in related psychology, ergonomics, and human factors for understanding performance. However, it still is difficult to describe and thus, to measure it. Since there is no single sensor that can give a full understanding of workload, extended research has been conducted in order to present robust biomarkers. During the last years, machine learning techniques have been used to predict cognitive workload based on various features. Gaze extracted features, such as pupil size, blink activity and saccadic measures, have been used as predictors. The aim of this study is to use gaze extracted features as the only predictors of cognitive workload. Two factors were investigated: time pressure and multi tasking. The findings of this study showed that eye and gaze features are useful indicators of cognitive workload levels, reaching up to 88% accuracy.