Sampled Dense Matrix Multiplication for High-Performance Machine Learning

Israt Nisa, Aravind Sukumaran-Rajam, Süreyya Emre Kurt, Changwan Hong, P. Sadayappan
{"title":"Sampled Dense Matrix Multiplication for High-Performance Machine Learning","authors":"Israt Nisa, Aravind Sukumaran-Rajam, Süreyya Emre Kurt, Changwan Hong, P. Sadayappan","doi":"10.1109/HiPC.2018.00013","DOIUrl":null,"url":null,"abstract":"Many machine learning methods involve iterative optimization and are amenable to a variety of alternate formulations. Many currently popular formulations for some machine learning methods based on core operations that essentially correspond to sparse matrix-vector products. A reformulation using sparse matrix-matrix products primitives can potentially enable significant performance enhancement. Sampled Dense-Dense Matrix Multiplication (SDDMM) is a primitive that has been shown to be usable as a core component in reformulations of many machine learning factor analysis algorithms such as Alternating Least Squares (ALS), Latent Dirichlet Allocation (LDA), Sparse Factor Analysis (SFA), and Gamma Poisson (GaP). It requires the computation of the product of two input dense matrices but only at locations of the result matrix corresponding to nonzero entries in a sparse third input matrix. In this paper, we address the development of cuSDDMM, a multi-node GPU-accelerated implementation for SDDMM. We analyze the data reuse characteristics of SDDMM and develop a model-driven strategy for choice of tiling permutation and tile-size choice. cuSDDMM improves significantly (up to 4.6x) over the best currently available GPU implementation of SDDMM (in the BIDMach Machine Learning library).","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Many machine learning methods involve iterative optimization and are amenable to a variety of alternate formulations. Many currently popular formulations for some machine learning methods based on core operations that essentially correspond to sparse matrix-vector products. A reformulation using sparse matrix-matrix products primitives can potentially enable significant performance enhancement. Sampled Dense-Dense Matrix Multiplication (SDDMM) is a primitive that has been shown to be usable as a core component in reformulations of many machine learning factor analysis algorithms such as Alternating Least Squares (ALS), Latent Dirichlet Allocation (LDA), Sparse Factor Analysis (SFA), and Gamma Poisson (GaP). It requires the computation of the product of two input dense matrices but only at locations of the result matrix corresponding to nonzero entries in a sparse third input matrix. In this paper, we address the development of cuSDDMM, a multi-node GPU-accelerated implementation for SDDMM. We analyze the data reuse characteristics of SDDMM and develop a model-driven strategy for choice of tiling permutation and tile-size choice. cuSDDMM improves significantly (up to 4.6x) over the best currently available GPU implementation of SDDMM (in the BIDMach Machine Learning library).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能机器学习的采样密集矩阵乘法
许多机器学习方法涉及迭代优化,并适用于各种替代公式。许多目前流行的基于核心操作的机器学习方法的公式本质上对应于稀疏矩阵-向量乘积。使用稀疏矩阵-矩阵乘积原语的重新表述可以潜在地实现显著的性能增强。采样稠密矩阵乘法(SDDMM)是一种原语,已被证明可作为许多机器学习因子分析算法(如交替最小二乘(ALS),潜在狄利克雷分配(LDA),稀疏因子分析(SFA)和伽玛泊松(GaP))重新表述的核心组件。它需要计算两个输入密集矩阵的乘积,但只在结果矩阵对应于稀疏第三个输入矩阵中的非零项的位置上计算。在本文中,我们讨论了cuSDDMM的开发,cuSDDMM是一种多节点gpu加速的SDDMM实现。我们分析了SDDMM的数据重用特征,并开发了一个模型驱动的策略来选择瓷砖排列和瓷砖大小的选择。cuSDDMM比目前可用的最佳SDDMM GPU实现(在BIDMach机器学习库中)显著提高(高达4.6倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workflow Simulation Aware and Multi-threading Effective Task Scheduling for Heterogeneous Computing Parallel Read Partitioning for Concurrent Assembly of Metagenomic Data Decentralized Privacy-Preserving Timed Execution in Blockchain-Based Smart Contract Platforms OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training Dynamic Count-Min Sketch for Analytical Queries Over Continuous Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1