Prediction of Wave Attenuation from a Conifer Forest – 3-D Vector Transport Theory

S. A. Torrico, R. Lang
{"title":"Prediction of Wave Attenuation from a Conifer Forest – 3-D Vector Transport Theory","authors":"S. A. Torrico, R. Lang","doi":"10.23919/USNC/URSI49741.2020.9321621","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to use the ground measurements of tree biophysical parameters in conjunction with the exact 3D vector radiative transport theory to compute the attenuation of a propagating wave going through the canopy of a forest of coniferous trees. The ground measurements of trees were taken in a NASA site at a Natural Virginia pine forest at Goddard Geophysical and Astronomical Observatory. The canopy parameters were obtained from destructive sampling. The electrical characteristics of the branches and needles were measured. The exact 3-D vector radiative transport theory has been developed to compute the attenuation produced by a pine forest containing random located branches and needles. The branches and the needles are modeled as lossy-dielectric cylinders with prescribed orientation statistics. Results will show the importance of knowing the electrical and biophysical parameters of the forest to be able to predict with more certainty the attenuation of a coniferous forest.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to use the ground measurements of tree biophysical parameters in conjunction with the exact 3D vector radiative transport theory to compute the attenuation of a propagating wave going through the canopy of a forest of coniferous trees. The ground measurements of trees were taken in a NASA site at a Natural Virginia pine forest at Goddard Geophysical and Astronomical Observatory. The canopy parameters were obtained from destructive sampling. The electrical characteristics of the branches and needles were measured. The exact 3-D vector radiative transport theory has been developed to compute the attenuation produced by a pine forest containing random located branches and needles. The branches and the needles are modeled as lossy-dielectric cylinders with prescribed orientation statistics. Results will show the importance of knowing the electrical and biophysical parameters of the forest to be able to predict with more certainty the attenuation of a coniferous forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针叶林波衰减预测——三维矢量传输理论
本文的目的是结合精确的三维矢量辐射输运理论,利用树木生物物理参数的地面测量来计算穿过针叶树林冠层的传播波的衰减。树木的地面测量是在美国宇航局戈达德地球物理和天文台的弗吉尼亚天然松林进行的。通过破坏性采样获得冠层参数。测量了树枝和针叶的电特性。建立了精确的三维矢量辐射输运理论来计算含有随机分布的树枝和针叶的松林所产生的衰减。分支和针被建模为具有指定方向统计量的损耗介质圆柱体。结果表明,了解森林的电学和生物物理参数对于能够更准确地预测针叶林的衰减具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Length Limits for Perfectly Matched Transmission Line Impedance Transformation Borehole Water Holdup Detection Using Conical Spiral Transmission Line Analysis of GPS Gradient Parameters for Rainfall Prediction Adaptive Sensing Matrix Design in Compressive Sensing Based Direction of Arrival Estimation with Hardware Constraints Importance of Hydrostatic Delay Models in Deriving PWV from GPS Signal Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1