Harnessing Semantics for Answer Sentence Retrieval

Ruey-Cheng Chen, Damiano Spina, W. Bruce Croft, M. Sanderson, Falk Scholer
{"title":"Harnessing Semantics for Answer Sentence Retrieval","authors":"Ruey-Cheng Chen, Damiano Spina, W. Bruce Croft, M. Sanderson, Falk Scholer","doi":"10.1145/2810133.2810136","DOIUrl":null,"url":null,"abstract":"Finding answer passages from the Web is a challenging task. One major difficulty is to retrieve sentences that may not have many terms in common with the question. In this paper, we experiment with two semantic approaches for finding non-factoid answers using a learning-to-rank retrieval setting. We show that using semantic representations learned from external resources such as Wikipedia or Google News may substantially improve the quality of top-ranked retrieved answers.","PeriodicalId":298747,"journal":{"name":"Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2810133.2810136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Finding answer passages from the Web is a challenging task. One major difficulty is to retrieve sentences that may not have many terms in common with the question. In this paper, we experiment with two semantic approaches for finding non-factoid answers using a learning-to-rank retrieval setting. We show that using semantic representations learned from external resources such as Wikipedia or Google News may substantially improve the quality of top-ranked retrieved answers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用语义进行答案句子检索
从网上找到答案是一项具有挑战性的任务。一个主要的困难是检索可能与问题没有很多共同术语的句子。在本文中,我们使用学习排序检索设置实验了两种语义方法来寻找非事实答案。我们表明,使用从外部资源(如维基百科或谷歌新闻)学习的语义表示可能会大大提高排名靠前的检索答案的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temporal Reconciliation for Dating Photographs Using Entity Information Hugo: Entity-based News Search and Summarisation CADEminer: A System for Mining Consumer Reports on Adverse Drug Side Effects Contextualizing Data on a Content Management System Harnessing Semantics for Answer Sentence Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1