Location-Based Beamforming Architecture for Efficient Farming Applications with Drones

Wenbo Wang, N. Okati, Islam M. Tanash, T. Riihonen, E. Lohan
{"title":"Location-Based Beamforming Architecture for Efficient Farming Applications with Drones","authors":"Wenbo Wang, N. Okati, Islam M. Tanash, T. Riihonen, E. Lohan","doi":"10.1109/ICL-GNSS.2019.8752698","DOIUrl":null,"url":null,"abstract":"This paper proposes a drone-based architecture with location-based beamforming (LBBF)and edge computing support for efficient crop harvesting and management in order to reduce the food waste in the food chain in farming applications. Monitoring the crop is a crucial part in the food chain. In this work, for monitoring purpose we consider synthetic aperture radar (SAR)mounted on the unmanned aerial vehicles (UAVs). In order to provide the edge computing information with good reliability, small latency and good throughput, we introduce a LBBF technique for the uplink connectivity. Firstly, the LBBF algorithm is proposed for the scenario where a single user is connected to the base station under analog beamforming scheme. Secondly, in the context of LBBF, we apply an optimization of the antenna size under the uniform rectangular array (URA)assumption. Thirdly, we implement a numerical analysis to compare LBBF with the traditional channel state information (CSI)-based beamforming. We show that the LBBF outperforms the CSI-based beamforming in the noisy environments according to the investigated performance metrics, namely the reliability of the connectivity and the capacity. In addition, the LBBF also has smaller latency than CSI-based beamforming.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"12 12 Pt A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a drone-based architecture with location-based beamforming (LBBF)and edge computing support for efficient crop harvesting and management in order to reduce the food waste in the food chain in farming applications. Monitoring the crop is a crucial part in the food chain. In this work, for monitoring purpose we consider synthetic aperture radar (SAR)mounted on the unmanned aerial vehicles (UAVs). In order to provide the edge computing information with good reliability, small latency and good throughput, we introduce a LBBF technique for the uplink connectivity. Firstly, the LBBF algorithm is proposed for the scenario where a single user is connected to the base station under analog beamforming scheme. Secondly, in the context of LBBF, we apply an optimization of the antenna size under the uniform rectangular array (URA)assumption. Thirdly, we implement a numerical analysis to compare LBBF with the traditional channel state information (CSI)-based beamforming. We show that the LBBF outperforms the CSI-based beamforming in the noisy environments according to the investigated performance metrics, namely the reliability of the connectivity and the capacity. In addition, the LBBF also has smaller latency than CSI-based beamforming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位置的波束形成架构用于无人机的高效农业应用
本文提出了一种基于无人机的架构,具有基于位置的波束成形(LBBF)和边缘计算支持,用于有效的作物收获和管理,以减少农业应用中食物链中的食物浪费。监测作物是食物链中至关重要的一部分。在这项工作中,我们考虑安装在无人驾驶飞行器(uav)上的合成孔径雷达(SAR)进行监测。为了提供高可靠性、低时延和高吞吐量的边缘计算信息,我们引入了一种LBBF技术用于上行链路连接。首先,针对模拟波束形成方案下单用户接入基站的情况,提出了LBBF算法。其次,在LBBF的背景下,我们应用了均匀矩形阵列(URA)假设下的天线尺寸优化。第三,对LBBF与传统的基于信道状态信息(CSI)的波束形成进行了数值分析。根据所研究的性能指标,即连接的可靠性和容量,我们表明LBBF在噪声环境中优于基于csi的波束形成。此外,LBBF还具有比基于csi的波束形成更小的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data from GNSS-Based Passive Radar to Support Flood Monitoring Operations Discrete Positioning Using UWB Channel Impulse Responses and Machine Learning On the Effective Length of Channel Impulse Responses in UWB Single Anchor Localization V2X based Probabilistic Cooperative Position Estimation Applying GNSS Double Differences Blind Spoofing Detection Using a Multi-Antenna Snapshot Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1