Fast multi-objective antenna optimization using sequential patching and variable-fidelity EM models

S. Koziel, A. Bekasiewicz
{"title":"Fast multi-objective antenna optimization using sequential patching and variable-fidelity EM models","authors":"S. Koziel, A. Bekasiewicz","doi":"10.1109/LAPC.2015.7366067","DOIUrl":null,"url":null,"abstract":"In this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained by means of single-objective optimization runs). For the sake of computational efficiency, the patching process is realized at the level of coarse-discretization EM simulation model. The final Pareto front is obtained through surrogate-based optimization, and it is reusing the EM simulation data acquired at the initial design stage. The proposed approach is demonstrated using the example of an ultrawideband monopole antenna.","PeriodicalId":339610,"journal":{"name":"2015 Loughborough Antennas & Propagation Conference (LAPC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Loughborough Antennas & Propagation Conference (LAPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAPC.2015.7366067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained by means of single-objective optimization runs). For the sake of computational efficiency, the patching process is realized at the level of coarse-discretization EM simulation model. The final Pareto front is obtained through surrogate-based optimization, and it is reusing the EM simulation data acquired at the initial design stage. The proposed approach is demonstrated using the example of an ultrawideband monopole antenna.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于顺序修补和变保真度EM模型的快速多目标天线优化
提出了一种天线结构快速多目标优化设计方法。在我们的方法中,通过对设计空间的顺序修补,获得了代表冲突设计目标之间最佳可能权衡的帕累托集的初始近似值。后者是一种基于模板的搜索,旨在创建一条连接极端帕累托最优设计的路径(通过单目标优化运行获得)。为了提高计算效率,拼接过程在粗离散化电磁仿真模型层面实现。最终的Pareto front是通过基于代理的优化得到的,该优化利用了初始设计阶段获得的电磁仿真数据。以超宽带单极天线为例,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple source localization for partial discharge monitoring in electrical substation Localisation of partial discharge sources using radio fingerprinting technique Small 3D array design using superdirective antennas Stacked patch antennas appropriate for remotely piloted aircraft applications Design of frequency reconfigurable triband antenna using capacitive loading for wireless communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1