Indirect Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks

A. Udenze, K. Mcdonald-Maier
{"title":"Indirect Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks","authors":"A. Udenze, K. Mcdonald-Maier","doi":"10.1109/AHS.2009.51","DOIUrl":null,"url":null,"abstract":"In this paper, non deterministic Indirect Reinforcement Learning (RL) techniques for controlling the transmission times and power of Wireless Network nodes are presented. Indirect RL facilitates planning and learning which ultimately leads to convergence on optimal actions with reduced episodes or time steps compared to direct RL. Three Dyna architecture based algorithms for non deterministic environments are presented. The results show improvements over direct RL and conventional static power control techniques.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, non deterministic Indirect Reinforcement Learning (RL) techniques for controlling the transmission times and power of Wireless Network nodes are presented. Indirect RL facilitates planning and learning which ultimately leads to convergence on optimal actions with reduced episodes or time steps compared to direct RL. Three Dyna architecture based algorithms for non deterministic environments are presented. The results show improvements over direct RL and conventional static power control techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线网络中自主功率配置与控制的间接强化学习
本文提出了一种控制无线网络节点传输时间和功率的非确定性间接强化学习(RL)技术。与直接强化学习相比,间接强化学习促进了计划和学习,最终导致最优行为的收敛,减少了情节或时间步长。针对非确定性环境,提出了三种基于Dyna体系结构的算法。结果表明,与直接RL和传统的静态功率控制技术相比,该方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically Adapted Low-Energy Fault Tolerant Processors Partial Bitstream 2-D Core Relocation for Reconfigurable Architectures Automated Wire Antennas Design using Dynamic Dominance Evolutionary Algorithm Adaptive Hardware Real-Time Task Scheduler of Multi-Core ATPA Environment Evolutionary Algorithms in Unreliable Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1