Fast online parameter estimation of the Intelligent Driver Model for trajectory prediction

Karsten Kreutz, J. Eggert
{"title":"Fast online parameter estimation of the Intelligent Driver Model for trajectory prediction","authors":"Karsten Kreutz, J. Eggert","doi":"10.1109/iv51971.2022.9827115","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze a method for trajectory prediction in longitudinal car-following scenarios. Hereby, the prediction is realized by a longitudinal car-following model (Intelligent Driver Model, IDM) with online estimated parameters. Previous work has shown that IDM online parameter adaptation is possible but difficult and slow, while providing only small improvement of prediction quality over e.g. constant velocity or constant acceleration baseline models.In our approach (Online IDM, OIDM), we use the difference between a parameter-specific trajectory and the real past trajectory as objective function of the optimization. Instead of optimizing the model parameters “directly”, we gain them based on a weighted sum of a set of prototype parameters, optimizing these weights.To show the benefits of the method, we compare the properties of our approach against state-of-the-art prediction methods for longitudinal driving, such as Constant Velocity (CV), Constant Acceleration (CA) and particle filter approaches on an open freeway driving dataset. The evaluation shows significant improvements in several aspects: (I) The prediction accuracy is significantly increased, (II) the obtained parameters exhibit a fast convergence and increased temporal stability and (III) the computational effort is reduced so that an online parameter adaptation becomes feasible.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose and analyze a method for trajectory prediction in longitudinal car-following scenarios. Hereby, the prediction is realized by a longitudinal car-following model (Intelligent Driver Model, IDM) with online estimated parameters. Previous work has shown that IDM online parameter adaptation is possible but difficult and slow, while providing only small improvement of prediction quality over e.g. constant velocity or constant acceleration baseline models.In our approach (Online IDM, OIDM), we use the difference between a parameter-specific trajectory and the real past trajectory as objective function of the optimization. Instead of optimizing the model parameters “directly”, we gain them based on a weighted sum of a set of prototype parameters, optimizing these weights.To show the benefits of the method, we compare the properties of our approach against state-of-the-art prediction methods for longitudinal driving, such as Constant Velocity (CV), Constant Acceleration (CA) and particle filter approaches on an open freeway driving dataset. The evaluation shows significant improvements in several aspects: (I) The prediction accuracy is significantly increased, (II) the obtained parameters exhibit a fast convergence and increased temporal stability and (III) the computational effort is reduced so that an online parameter adaptation becomes feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于轨迹预测的智能驾驶员模型的快速在线参数估计
本文提出并分析了一种纵向车辆跟随场景下的轨迹预测方法。其中,通过在线估计参数的纵向跟车模型(Intelligent Driver model, IDM)实现预测。先前的工作表明,IDM在线参数自适应是可能的,但困难且缓慢,同时仅提供了少量的预测质量改进,例如恒定速度或恒定加速度基线模型。在我们的方法(在线IDM, OIDM)中,我们使用参数特定轨迹与实际过去轨迹之间的差异作为优化的目标函数。我们不是“直接”优化模型参数,而是基于一组原型参数的加权和,优化这些权重来获得模型参数。为了展示该方法的优势,我们将该方法与最先进的纵向驾驶预测方法(如开放高速公路驾驶数据集上的恒速(CV)、恒加速度(CA)和粒子滤波方法)的特性进行了比较。评价结果表明,该方法在以下几个方面有显著改善:(1)预测精度显著提高;(2)得到的参数收敛速度快,时间稳定性增强;(3)减少了计算量,使在线参数自适应成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1