An Efficient Method to Localize and Quantify Axial Displacement in Transformer Winding Using Support Vector Machines

P. Saji, A. Muhammed, V. V.
{"title":"An Efficient Method to Localize and Quantify Axial Displacement in Transformer Winding Using Support Vector Machines","authors":"P. Saji, A. Muhammed, V. V.","doi":"10.1109/GlobConPT57482.2022.9938221","DOIUrl":null,"url":null,"abstract":"Power transformers are an inevitable and expensive equipment in an electrical power system. Condition monitoring uses predictive analysis to determine whether a problem is present or absent in order to prevent transformer failures and guarantee the transformer's safe operation. Among various condition monitoring techniques, Sweep Frequency Response Analysis (SFRA) is a powerful and reliable tool to detect winding deformations. However, the diagnosing potential of SFRA is still its infant state. Any mechanical damage in the transformer winding will change the equivalent circuit parameters and this change will be reflected in the FRA traces. By comparing the FRA traces of the testing transformer with normal winding the fault can be detected. To locate and quantify the axial displacement these FRA traces need to be acknowledged precisely. Support Vector Machine (SVM), a supervised machine learning technique helps to locate and quantify the axial displacement with the help of features extracted from the FRA traces of testing transformer and nominal winding. A series of axial displacements is simulated in FEMM Software and corresponding equivalent circuit parameters are used to generate FRA traces. Furthermore, features are extracted from these FRA traces to train the SVM model to enable it to predict the location and quantity of axial displacement accurately. Finally, the accuracy of this SVM model is tested through randomly created axial displacements data. The result indicates the ability of this technique to be used as an intelligent and accurate diagnostic tool.","PeriodicalId":431406,"journal":{"name":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConPT57482.2022.9938221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power transformers are an inevitable and expensive equipment in an electrical power system. Condition monitoring uses predictive analysis to determine whether a problem is present or absent in order to prevent transformer failures and guarantee the transformer's safe operation. Among various condition monitoring techniques, Sweep Frequency Response Analysis (SFRA) is a powerful and reliable tool to detect winding deformations. However, the diagnosing potential of SFRA is still its infant state. Any mechanical damage in the transformer winding will change the equivalent circuit parameters and this change will be reflected in the FRA traces. By comparing the FRA traces of the testing transformer with normal winding the fault can be detected. To locate and quantify the axial displacement these FRA traces need to be acknowledged precisely. Support Vector Machine (SVM), a supervised machine learning technique helps to locate and quantify the axial displacement with the help of features extracted from the FRA traces of testing transformer and nominal winding. A series of axial displacements is simulated in FEMM Software and corresponding equivalent circuit parameters are used to generate FRA traces. Furthermore, features are extracted from these FRA traces to train the SVM model to enable it to predict the location and quantity of axial displacement accurately. Finally, the accuracy of this SVM model is tested through randomly created axial displacements data. The result indicates the ability of this technique to be used as an intelligent and accurate diagnostic tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的变压器绕组轴向位移定位与量化方法
电力变压器是电力系统中不可避免的昂贵设备。状态监测通过预测分析来确定是否存在问题,以防止变压器故障,保证变压器的安全运行。在各种状态监测技术中,扫描频响分析(SFRA)是检测绕组变形的一种强大而可靠的工具。然而,SFRA的诊断潜力仍处于初级阶段。变压器绕组的任何机械损伤都会改变等效电路参数,这种变化将反映在FRA走线中。通过比较测试变压器的FRA走线与正常绕组,可以检测出故障。为了定位和量化轴向位移,需要精确地识别这些FRA轨迹。支持向量机(SVM)是一种监督式机器学习技术,利用从测试变压器和标称绕组的FRA轨迹中提取的特征来定位和量化轴向位移。在FEMM软件中模拟了一系列轴向位移,并利用相应的等效电路参数生成了FRA走线。然后,从这些FRA轨迹中提取特征来训练SVM模型,使其能够准确预测轴向位移的位置和数量。最后,通过随机生成的轴向位移数据对SVM模型的精度进行检验。结果表明,该技术可作为一种智能、准确的诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MeDiFakeD: Medical Deepfake Detection using Convolutional Reservoir Networks Artificial Neural Networks as a Methodology for Optimal Location of Static Synchronous Series Compensator in Transmission Systems Electromagnetic Characterization of Multi-winding High Frequency Magnetic Link Under Non-sinusoidal Excitations Implementation of Various Modulation Techniques to a PV Fed Solar Inverter with High Gain DC-DC Converter in Standalone Applications Obstacle Free Robot Motion Planning and Intelligent Maneuvering Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1