Computationally Efficient Fail-safe Trajectory Planning for Self-driving Vehicles Using Convex Optimization

Christian Pek, M. Althoff
{"title":"Computationally Efficient Fail-safe Trajectory Planning for Self-driving Vehicles Using Convex Optimization","authors":"Christian Pek, M. Althoff","doi":"10.1109/ITSC.2018.8569425","DOIUrl":null,"url":null,"abstract":"Ensuring the safety of self-driving vehicles is a challenging task, especially if other traffic participants severely deviate from the predicted behavior. One solution is to ensure that the vehicle is able to execute a collision-free evasive trajectory at any time. However, a fast method to plan these socalled fail-safe trajectories does not yet exist. Our new approach plans fail-safe trajectories in arbitrary traffic scenarios by incorporating convex optimization techniques. By integrating safety verification in the planner, we are able to generate fail-safe trajectories in real-time, which are guaranteed to be safe. At the same time, we minimize jerk to provide enhanced comfort for passengers. The proposed benefits are demonstrated in different urban and highway scenarios using the CommonRoad benchmark suite and compared to a widely-used sampling-based planner.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Ensuring the safety of self-driving vehicles is a challenging task, especially if other traffic participants severely deviate from the predicted behavior. One solution is to ensure that the vehicle is able to execute a collision-free evasive trajectory at any time. However, a fast method to plan these socalled fail-safe trajectories does not yet exist. Our new approach plans fail-safe trajectories in arbitrary traffic scenarios by incorporating convex optimization techniques. By integrating safety verification in the planner, we are able to generate fail-safe trajectories in real-time, which are guaranteed to be safe. At the same time, we minimize jerk to provide enhanced comfort for passengers. The proposed benefits are demonstrated in different urban and highway scenarios using the CommonRoad benchmark suite and compared to a widely-used sampling-based planner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于凸优化的自动驾驶汽车高效故障安全轨迹规划
确保自动驾驶汽车的安全是一项具有挑战性的任务,尤其是在其他交通参与者严重偏离预测行为的情况下。一种解决方案是确保车辆能够在任何时候执行无碰撞的规避轨迹。然而,目前还不存在一种快速的方法来规划这些所谓的故障安全轨迹。我们的新方法通过结合凸优化技术在任意交通场景中规划故障安全轨迹。通过在规划器中集成安全验证,我们能够实时生成故障安全轨迹,从而保证其安全性。同时,我们尽量减少颠簸,以提高乘客的舒适度。使用CommonRoad基准套件在不同的城市和高速公路场景中展示了所提出的好处,并与广泛使用的基于抽样的规划器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Small Satellites and Connected Vehicles for Large-Scale Traffic Monitoring in Road Network Applications of train routing selection methods for real-time railway traffic management To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario Future Mobility Sensing: An Intelligent Mobility Data Collection and Visualization Platform Large Scale Performance Assessment of the Lighthill-Whitham-Richards Model on a Smart Motorway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1