Thermoelectric properties of CoSb3 prepared by copper mold quenching technique

H. Nakagawa, H. Tanaka, A. Kasama, K. Miyamura, H. Masumoto, K. Matsubara
{"title":"Thermoelectric properties of CoSb3 prepared by copper mold quenching technique","authors":"H. Nakagawa, H. Tanaka, A. Kasama, K. Miyamura, H. Masumoto, K. Matsubara","doi":"10.1109/ICT.1996.553269","DOIUrl":null,"url":null,"abstract":"A novel technique to prepare CoSb/sub 3/ materials on a mass production level was studied. Co and Sb were melted together in an alumina crucible at 1373 K, and cast in a copper mold to solidify the melts. The obtained alloyed ingots consist of mainly three phases of CoSb/sub 3/, CoSb/sub 2/ and Sb. To react Sb with CoSb/sub 2/ and get a CoSb/sub 3/ single phase, the ingots were annealed at 823-1073 K. During the heat treatment, Sb and CoSb/sub 2/ phases changed to CoSb/sub 3/ phases and voids. The obtained CoSb/sub 3/ samples show n-type thermoelectric properties. Some factors affecting the properties, for example, Sb/Co atomic ratio, impurity content and density are discussed, based on the experimental data by X-ray diffractometry, optical microscopy, EPMA, chemical analysis and so on. On the other hand, an ingot was ground, mechanically alloyed and hot-pressed. The hot-pressed samples show p-type thermoelectric properties. Moreover, mechanical alloying is effective to reduce the thermal conductivity by refining the crystal grain size of CoSb/sub 3/. As a result, ZT value, 0.10 was obtained at a temperature of 669 K.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel technique to prepare CoSb/sub 3/ materials on a mass production level was studied. Co and Sb were melted together in an alumina crucible at 1373 K, and cast in a copper mold to solidify the melts. The obtained alloyed ingots consist of mainly three phases of CoSb/sub 3/, CoSb/sub 2/ and Sb. To react Sb with CoSb/sub 2/ and get a CoSb/sub 3/ single phase, the ingots were annealed at 823-1073 K. During the heat treatment, Sb and CoSb/sub 2/ phases changed to CoSb/sub 3/ phases and voids. The obtained CoSb/sub 3/ samples show n-type thermoelectric properties. Some factors affecting the properties, for example, Sb/Co atomic ratio, impurity content and density are discussed, based on the experimental data by X-ray diffractometry, optical microscopy, EPMA, chemical analysis and so on. On the other hand, an ingot was ground, mechanically alloyed and hot-pressed. The hot-pressed samples show p-type thermoelectric properties. Moreover, mechanical alloying is effective to reduce the thermal conductivity by refining the crystal grain size of CoSb/sub 3/. As a result, ZT value, 0.10 was obtained at a temperature of 669 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜模淬火工艺制备CoSb3的热电性能
研究了一种大规模制备CoSb/sub - 3/材料的新工艺。Co和Sb在1373 K的氧化铝坩埚中熔化在一起,并在铜模中铸造以使熔体凝固。得到的合金锭主要由CoSb/sub - 3/、CoSb/sub - 2/和Sb三相组成。为使Sb与CoSb/sub - 2/发生反应而得到CoSb/sub - 3/单相,将锭在823 ~ 1073 K下退火。在热处理过程中,Sb和CoSb/sub 2/相转变为CoSb/sub 3/相和空洞。得到的CoSb/ sub3 /样品具有n型热电性质。根据x射线衍射、光学显微镜、电子能谱分析、化学分析等实验数据,讨论了Sb/Co原子比、杂质含量、密度等因素对材料性能的影响。另一方面,锭被磨碎,机械合金化和热压。热压样品显示p型热电性能。此外,机械合金化可以通过细化CoSb/sub - 3/的晶粒尺寸来有效降低导热系数。结果表明,在669 K温度下,ZT值为0.10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy Doping with organic halogen-containing compounds the Bi2(Te,Se)3 solid solutions The theoretical analysis of the thermoelectric semiconducting crystalline materials figure of merit Thermoelectric coolers with small response time Effective figure of merit increase at the large temperature drops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1