Human pose classification within the context of near-IR imagery tracking

Jiwan Han, A. Gaszczak, Ryszard Maciol, Stuart Barnes, T. Breckon
{"title":"Human pose classification within the context of near-IR imagery tracking","authors":"Jiwan Han, A. Gaszczak, Ryszard Maciol, Stuart Barnes, T. Breckon","doi":"10.1117/12.2028375","DOIUrl":null,"url":null,"abstract":"We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2028375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近红外图像跟踪下的人体姿态分类
我们解决了在自动图像理解中人类行为分析的挑战。虽然先前的工作集中在可见光波段(EO)图像中的这项任务,但相比之下,我们的目标是热波段(红外,IR)图像中的基本人体姿势分类。通过利用肢体定位的关键优势,该图像为我们提供了两个不同复杂程度的不同人体姿势分类问题:1)识别场景中被动或主动的个体;2)识别潜在携带武器的个体。这两种方法都使用一组离散的特征来捕获身体姿势特征,然后使用一系列机器学习技术进行最终分类。在热波段(IR)图像中自动人体目标跟踪的更广泛背景下,这些具有挑战性的任务在广泛的环境条件下取得了重大成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact camera technologies for real-time false-color imaging in the SWIR band Arbitrary waveform generation using optical direct digital synthesis Advances in AlGaInN laser diode technology for defence applications Design of high sensitivity detector for underwater communication system Automated generation of high-quality training data for appearance-based object models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1