J. S. Cheong, J. Ong, J. S. Ng, A. Krysa, F. Bastiman, J. David
{"title":"Design of high sensitivity detector for underwater communication system","authors":"J. S. Cheong, J. Ong, J. S. Ng, A. Krysa, F. Bastiman, J. David","doi":"10.1117/12.2031953","DOIUrl":null,"url":null,"abstract":"Al0.52In0.48P is the largest bandgap material in III-V non-nitride semiconductors that is lattice matched to a readily available substrate (GaAs). Having a bandgap narrower than that of GaN enables it to detect wavelengths around 480 nm. Such wavelengths have the best transmittance underwater and may be used as a carrier in underwater communication systems. We present an Al0.52In0.48P homo-junction Separate-Absorption-Multiplication-Avalanche-Photodiode (SAMAPD) as a high sensitivity detector for such an application. By increasing the neutral and space-charge region thicknesses, the peak response wavelength can be tuned to longer wavelengths with a narrower full-width-half-maximum (FWHM). The quantum efficiency of the detector reduces with FWHM and this is compensated by having an avalanche gain. At room temperature, the SAM-APD has a dark current of <20 pA for a 210 μm radius device up to 99.9% of breakdown voltage. The structure gives a narrow spectral FWHM of 22 nm with centre wavelength of 482 nm. An external quantum efficiency of 33% and 6410% at 482 nm is obtained at bias voltage of -19 V and -92.6 V respectively.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2031953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Al0.52In0.48P is the largest bandgap material in III-V non-nitride semiconductors that is lattice matched to a readily available substrate (GaAs). Having a bandgap narrower than that of GaN enables it to detect wavelengths around 480 nm. Such wavelengths have the best transmittance underwater and may be used as a carrier in underwater communication systems. We present an Al0.52In0.48P homo-junction Separate-Absorption-Multiplication-Avalanche-Photodiode (SAMAPD) as a high sensitivity detector for such an application. By increasing the neutral and space-charge region thicknesses, the peak response wavelength can be tuned to longer wavelengths with a narrower full-width-half-maximum (FWHM). The quantum efficiency of the detector reduces with FWHM and this is compensated by having an avalanche gain. At room temperature, the SAM-APD has a dark current of <20 pA for a 210 μm radius device up to 99.9% of breakdown voltage. The structure gives a narrow spectral FWHM of 22 nm with centre wavelength of 482 nm. An external quantum efficiency of 33% and 6410% at 482 nm is obtained at bias voltage of -19 V and -92.6 V respectively.