{"title":"Self-managed decentralised systems using K-components and collaborative reinforcement learning","authors":"J. Dowling, V. Cahill","doi":"10.1145/1075405.1075413","DOIUrl":null,"url":null,"abstract":"Components in a decentralised system are faced with uncertainty as how to best adapt to a changing environment to maintain or optimise system performance. How can individual components learn to adapt to recover from faults in an uncertain environment? How can a decentralised system coordinate the adaptive behaviour of its components to realise system optimisation goals given problems establishing consensus in dynamic environments? This paper introduces a self-adaptive component model, called K-Components, that enables individual components adapt to a changing environment and a decentralised coordination model, called collaborative reinforcement learning, that enables groups of components to learn to collectively adapt their behaviour to establish and maintain system-wide properties in a changing environment.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075405.1075413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
Components in a decentralised system are faced with uncertainty as how to best adapt to a changing environment to maintain or optimise system performance. How can individual components learn to adapt to recover from faults in an uncertain environment? How can a decentralised system coordinate the adaptive behaviour of its components to realise system optimisation goals given problems establishing consensus in dynamic environments? This paper introduces a self-adaptive component model, called K-Components, that enables individual components adapt to a changing environment and a decentralised coordination model, called collaborative reinforcement learning, that enables groups of components to learn to collectively adapt their behaviour to establish and maintain system-wide properties in a changing environment.