Face Verification with Gabor Representation and Support Vector Machines

Yap Wooi Hen, M. Khalid, R. Yusof
{"title":"Face Verification with Gabor Representation and Support Vector Machines","authors":"Yap Wooi Hen, M. Khalid, R. Yusof","doi":"10.1109/AMS.2007.39","DOIUrl":null,"url":null,"abstract":"This paper investigates the intrinsic ability of Gabor representation and support vector machines (SVM) in capturing discriminatory content for face verification task. The idea is to decompose a face image into different spatial frequencies (scales) and orientations where salient discriminant features may appear. Dimensionality reduction is adopted to create low dimensional feature vectors for more convenient processing. SVM is used to extract relevant information from this low dimensional training data in order to construct a robust client-specific classifier. This method has been tested with publicly available AT&T and BANCA datasets. In the BANCA experiments, it was observed that method consistently yields the lowest error rates in comparison with other methods for all seven test configurations. An equal error rate (EER) of 6.19% on the G configuration of BANCA dataset has been achieved","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper investigates the intrinsic ability of Gabor representation and support vector machines (SVM) in capturing discriminatory content for face verification task. The idea is to decompose a face image into different spatial frequencies (scales) and orientations where salient discriminant features may appear. Dimensionality reduction is adopted to create low dimensional feature vectors for more convenient processing. SVM is used to extract relevant information from this low dimensional training data in order to construct a robust client-specific classifier. This method has been tested with publicly available AT&T and BANCA datasets. In the BANCA experiments, it was observed that method consistently yields the lowest error rates in comparison with other methods for all seven test configurations. An equal error rate (EER) of 6.19% on the G configuration of BANCA dataset has been achieved
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Gabor表示和支持向量机的人脸验证
本文研究了Gabor表示和支持向量机(SVM)在人脸验证任务中捕捉歧视性内容的内在能力。其思想是将人脸图像分解成不同的空间频率(尺度)和方向,其中可能出现显著的判别特征。采用降维方法生成低维特征向量,便于处理。使用支持向量机从这些低维训练数据中提取相关信息,以构建鲁棒的客户端特定分类器。这种方法已经用公开可用的AT&T和BANCA数据集进行了测试。在BANCA实验中,可以观察到,在所有七种测试配置中,该方法与其他方法相比始终产生最低的错误率。在BANCA数据集的G配置上实现了6.19%的等错误率(EER)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Protocol Steganography: Hiding Data in IP Header Energy Efficient Expanding Ring Search On Verification of Communicating Finite State Machines Using Residual Languages High-Speed Real-Time Simulation Modified Line Search Method for Global Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1