Tonal behavior analysis of an adaptive second-order sigma-delta modulator

Xiaohong Sun, K. Laker
{"title":"Tonal behavior analysis of an adaptive second-order sigma-delta modulator","authors":"Xiaohong Sun, K. Laker","doi":"10.1109/ISCAS.2002.1010444","DOIUrl":null,"url":null,"abstract":"This paper analyzes the tonal behavior of an adaptive second-order sigma-delta modulator, which was developed and published by the same authors. Idle channel tones, caused by non-white quantization error, is not desirable in applications where the human ear is the end receiver. Besides their relatively small magnitude tones in the baseband, most sigma-delta modulators produce high-powered tones near f/sub s//2. It is a more serious problem because the clock noise near f/sub s//2 can couple these tones down into the baseband. Various simulations show that the more randomized nature of the aforementioned adaptive architecture makes it more advantageous in tonal behavior, particularly attractive in that it significantly reduces the dominant tone near f/sub s//2, which can not be reduced by dithering in a standard second order single-bit modulator. With comparison to the standard second-order sigma-delta modulators, the results are illustrated in both frequency and time domains.","PeriodicalId":203750,"journal":{"name":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2002.1010444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper analyzes the tonal behavior of an adaptive second-order sigma-delta modulator, which was developed and published by the same authors. Idle channel tones, caused by non-white quantization error, is not desirable in applications where the human ear is the end receiver. Besides their relatively small magnitude tones in the baseband, most sigma-delta modulators produce high-powered tones near f/sub s//2. It is a more serious problem because the clock noise near f/sub s//2 can couple these tones down into the baseband. Various simulations show that the more randomized nature of the aforementioned adaptive architecture makes it more advantageous in tonal behavior, particularly attractive in that it significantly reduces the dominant tone near f/sub s//2, which can not be reduced by dithering in a standard second order single-bit modulator. With comparison to the standard second-order sigma-delta modulators, the results are illustrated in both frequency and time domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应二阶σ - δ调制器的调性分析
本文分析了由同一作者开发并发表的自适应二阶σ - δ调制器的调性行为。由非白量化误差引起的空闲信道音调在人耳作为终端接收器的应用中是不可取的。除了基带中相对小幅度的音调外,大多数σ - δ调制器在f/sub //2附近产生高功率的音调。这是一个更严重的问题,因为f/sub /s /2附近的时钟噪声可以将这些音调耦合到基带。各种模拟表明,上述自适应结构的随机性使其在音调行为方面更具优势,特别是它显著降低了f/sub s//2附近的主音调,这是标准二阶单比特调制器无法通过抖动来降低的。通过与标准二阶σ - δ调制器的比较,结果在频域和时域都得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree Constant quality rate control for streaming MPEG-4 FGS video Joint space-multipath-Doppler RAKE receiving in DS-CDMA systems over time-selective fading channels Why the terms 'current mode' and 'voltage mode' neither divide nor qualify circuits A robust DWT-based video watermarking algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1