CNN Localization using AP Inverse Position Estimation

S. Aikawa, Shinichiro Yamamoto, Takuma Muramatsu
{"title":"CNN Localization using AP Inverse Position Estimation","authors":"S. Aikawa, Shinichiro Yamamoto, Takuma Muramatsu","doi":"10.1109/CAMA47423.2019.8959663","DOIUrl":null,"url":null,"abstract":"This contribution focuses on indoor localization by Finger Print method using RSSI of wireless LAN access point (AP). In recent years, there are lively animated discussions on the localization methods using Deep Learning. We proposed Finger Print based on the Convolutional Neural Network (CNN). Establish the adjacency relationship among APs as a two-dimensional model and use it to make the CNN model for Finger Print localization. In order to confirm the improvement of the localization accuracy by this proposal, we verified by experimental data.","PeriodicalId":170627,"journal":{"name":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA47423.2019.8959663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This contribution focuses on indoor localization by Finger Print method using RSSI of wireless LAN access point (AP). In recent years, there are lively animated discussions on the localization methods using Deep Learning. We proposed Finger Print based on the Convolutional Neural Network (CNN). Establish the adjacency relationship among APs as a two-dimensional model and use it to make the CNN model for Finger Print localization. In order to confirm the improvement of the localization accuracy by this proposal, we verified by experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用AP逆位置估计的CNN定位
本文主要研究了基于无线局域网接入点(AP) RSSI的指纹定位方法。近年来,关于深度学习定位方法的讨论非常活跃。我们提出了基于卷积神经网络(CNN)的指纹识别方法。建立ap之间的邻接关系作为二维模型,并利用它来制作指纹定位的CNN模型。为了验证该方案对定位精度的提高,我们用实验数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Parasitic Element Effects of Multiband IFA for UHF and SHF Channel Systems Particle Filter Track-Before-Detect for Target Detection and Tracking from Marine Radar Data Development of Microwave Tomography System Based on Arduino NANO and PocketVNA Impact of Terminal Polarization in a Urban Channel for LP-WAN Application Ultra Low Profile Inverted L Antenna Composed of CPW Printed on PET Sheet for IoT Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1