Fast and flexible Kullback-Leibler divergence based acoustic modeling for non-native speech recognition

David Imseng, Ramya Rasipuram, M. Magimai.-Doss
{"title":"Fast and flexible Kullback-Leibler divergence based acoustic modeling for non-native speech recognition","authors":"David Imseng, Ramya Rasipuram, M. Magimai.-Doss","doi":"10.1109/ASRU.2011.6163956","DOIUrl":null,"url":null,"abstract":"One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multi-accented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by using Kullback-Leibler divergence based hidden Markov models (KL-HMM). More precisely, the acoustic variability in the multi-accented speech is handled by using multilingual phoneme posterior probabilities, estimated by a multilayer perceptron trained on auxiliary data, as input feature for the KL-HMM system. With limited training data, we then build better acoustic models by exploiting the advantage that the KL-HMM system has fewer number of parameters. On HIWIRE corpus, the proposed approach yields a performance of 1.9% word error rate (WER) with 149 minutes of training data and a performance of 5.5% WER with 2 minutes of training data.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multi-accented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by using Kullback-Leibler divergence based hidden Markov models (KL-HMM). More precisely, the acoustic variability in the multi-accented speech is handled by using multilingual phoneme posterior probabilities, estimated by a multilayer perceptron trained on auxiliary data, as input feature for the KL-HMM system. With limited training data, we then build better acoustic models by exploiting the advantage that the KL-HMM system has fewer number of parameters. On HIWIRE corpus, the proposed approach yields a performance of 1.9% word error rate (WER) with 149 minutes of training data and a performance of 5.5% WER with 2 minutes of training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kullback-Leibler散度的非母语语音识别声学建模
非母语语音识别面临的主要挑战之一是如何在有限的训练数据下处理多口音非母语语音中的声学变异性。在本文中,我们研究了一种通过使用基于Kullback-Leibler散度的隐马尔可夫模型(KL-HMM)来解决这一挑战的方法。更准确地说,多重音语音中的声学变异性是通过使用多语言音素后验概率来处理的,由辅助数据训练的多层感知器估计,作为KL-HMM系统的输入特征。在训练数据有限的情况下,我们利用KL-HMM系统参数较少的优势,建立了更好的声学模型。在HIWIRE语料库上,该方法在149分钟的训练数据下产生1.9%的词错误率(WER),在2分钟的训练数据下产生5.5%的词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1