{"title":"Fast and flexible Kullback-Leibler divergence based acoustic modeling for non-native speech recognition","authors":"David Imseng, Ramya Rasipuram, M. Magimai.-Doss","doi":"10.1109/ASRU.2011.6163956","DOIUrl":null,"url":null,"abstract":"One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multi-accented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by using Kullback-Leibler divergence based hidden Markov models (KL-HMM). More precisely, the acoustic variability in the multi-accented speech is handled by using multilingual phoneme posterior probabilities, estimated by a multilayer perceptron trained on auxiliary data, as input feature for the KL-HMM system. With limited training data, we then build better acoustic models by exploiting the advantage that the KL-HMM system has fewer number of parameters. On HIWIRE corpus, the proposed approach yields a performance of 1.9% word error rate (WER) with 149 minutes of training data and a performance of 5.5% WER with 2 minutes of training data.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multi-accented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by using Kullback-Leibler divergence based hidden Markov models (KL-HMM). More precisely, the acoustic variability in the multi-accented speech is handled by using multilingual phoneme posterior probabilities, estimated by a multilayer perceptron trained on auxiliary data, as input feature for the KL-HMM system. With limited training data, we then build better acoustic models by exploiting the advantage that the KL-HMM system has fewer number of parameters. On HIWIRE corpus, the proposed approach yields a performance of 1.9% word error rate (WER) with 149 minutes of training data and a performance of 5.5% WER with 2 minutes of training data.