Building Morphological Analyzer for Informal Text in Indonesian

I. M. Krisna Dwitama, Muhammad Salman Al Farisi, Ika Alfina, A. Dinakaramani
{"title":"Building Morphological Analyzer for Informal Text in Indonesian","authors":"I. M. Krisna Dwitama, Muhammad Salman Al Farisi, Ika Alfina, A. Dinakaramani","doi":"10.1109/ICACSIS56558.2022.9923494","DOIUrl":null,"url":null,"abstract":"Informal text is heavily used by Indonesian in social media. However, NLP tool that can process such text is still very limited. In this work, we built a morphological analyzer for informal text in Indonesian by adding new rules for informal words to an existing Indonesian morphological analyzer named Aksara. Moreover, we also enrich the Aksara lexicon with informal words. The tool can perform tokenization, lemmatization, and part-of-speech (POS) tagging. Aksara uses a rule-based method using a finite-state transducer with a compiler named Foma. To evaluate the tool, we created a gold standard of 102 sentences with 1434 tokens which around 30 % are informal. The test results show that our tool has a tokenization accuracy of 97.21 %, while lemmatization accuracy for case insensitive is 90.37 %, and POS tagging evaluation reached an F1-Score value of 80%.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Informal text is heavily used by Indonesian in social media. However, NLP tool that can process such text is still very limited. In this work, we built a morphological analyzer for informal text in Indonesian by adding new rules for informal words to an existing Indonesian morphological analyzer named Aksara. Moreover, we also enrich the Aksara lexicon with informal words. The tool can perform tokenization, lemmatization, and part-of-speech (POS) tagging. Aksara uses a rule-based method using a finite-state transducer with a compiler named Foma. To evaluate the tool, we created a gold standard of 102 sentences with 1434 tokens which around 30 % are informal. The test results show that our tool has a tokenization accuracy of 97.21 %, while lemmatization accuracy for case insensitive is 90.37 %, and POS tagging evaluation reached an F1-Score value of 80%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印尼语非正式语篇形态分析器的建立
印尼人在社交媒体上大量使用非正式文本。然而,能够处理此类文本的NLP工具仍然非常有限。在这项工作中,我们建立了一个印度尼西亚非正式文本的形态分析仪,通过在现有的印度尼西亚形态分析仪Aksara中添加非正式单词的新规则。此外,我们还用非正式词汇丰富Aksara词汇。该工具可以执行标记化、词序化和词性标注。Aksara使用了一种基于规则的方法,使用了一个有限状态传感器和一个名为Foma的编译器。为了评估这个工具,我们创建了一个黄金标准,包含102个句子和1434个标记,其中约30%是非正式的。测试结果表明,该工具的标记准确率为97.21%,不区分大小写的词形化准确率为90.37%,POS标注评价达到F1-Score值80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1