UUV Target Tracking Path Planning Algorithm Based on Deep Reinforcement Learning

You Yue, Wang Hao, Guanjie Hao, Yao Yao
{"title":"UUV Target Tracking Path Planning Algorithm Based on Deep Reinforcement Learning","authors":"You Yue, Wang Hao, Guanjie Hao, Yao Yao","doi":"10.1109/ACIRS58671.2023.10240259","DOIUrl":null,"url":null,"abstract":"Path planning is one of the basic key problems in UUV task planning research. This paper studies the UUV path planning method in target tracking task scenario. The target is in a moving state, the moving elements are uncertain, and the traditional path planning algorithm is not applicable or easy to fall into the local optimal solution. In this paper, a tracing path planning algorithm based on deep reinforcement learning is presented, and a network parameter update method combining soft update with optimal sample training is proposed in the target network update link. The simulation results show that the algorithm can accelerate the network convergence speed while guaranteeing the stability of the learning process, and can quickly plan the optimal trajectory and maximize the time to track the target after UUV finds the target.","PeriodicalId":148401,"journal":{"name":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS58671.2023.10240259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Path planning is one of the basic key problems in UUV task planning research. This paper studies the UUV path planning method in target tracking task scenario. The target is in a moving state, the moving elements are uncertain, and the traditional path planning algorithm is not applicable or easy to fall into the local optimal solution. In this paper, a tracing path planning algorithm based on deep reinforcement learning is presented, and a network parameter update method combining soft update with optimal sample training is proposed in the target network update link. The simulation results show that the algorithm can accelerate the network convergence speed while guaranteeing the stability of the learning process, and can quickly plan the optimal trajectory and maximize the time to track the target after UUV finds the target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的UUV目标跟踪路径规划算法
路径规划是UUV任务规划研究中的基本关键问题之一。研究了目标跟踪任务场景下UUV的路径规划方法。目标处于运动状态,运动元素具有不确定性,传统的路径规划算法不适用或容易陷入局部最优解。本文提出了一种基于深度强化学习的跟踪路径规划算法,并在目标网络更新环节提出了一种将软更新与最优样本训练相结合的网络参数更新方法。仿真结果表明,该算法能在保证学习过程稳定性的同时加快网络收敛速度,并能在UUV找到目标后快速规划出最优轨迹,最大限度地延长跟踪目标的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Threshold-Based Electroencephalography Brain-Computer Interface for Robot Arm Control Hand Gesture Wheelchair Control Based on the Wrist Rotation with Agglomerative Hierarchical Clustering Method Modeling and Simulation Analysis of a Six Wheel Multimodal Mobile Robot Enhancing Biomedical Education with Real-Time Object Identification through Augmented Reality Conference Committees ACIRS 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1