A Mask Detection Algorithm Based on Improved Yolov5s

Xin Zhang, Yalan Zeng, Shunyong Zhou
{"title":"A Mask Detection Algorithm Based on Improved Yolov5s","authors":"Xin Zhang, Yalan Zeng, Shunyong Zhou","doi":"10.1145/3581807.3581818","DOIUrl":null,"url":null,"abstract":"Aiming at the severe form of new coronavirus epidemic prevention and control, a target detection algorithm is proposed to detect whether masks are worn in public places. The Ghostnet and SElayer modules with fewer design parameters replace the BottleneckCSP part in the original Yolov5s network, which reduces the computational complexity of the model and improves the detection accuracy. The bounding box regression loss function DIOU is optimized, the DGIOU loss function is used for bounding box regression, and the center coordinate distance between the two bounding boxes is considered to achieve a better convergence effect. In the feature pyramid, the depthwise separable convolution DW is used to replace the ordinary convolution, which further reduces the amount of parameters and reduces the loss of feature information caused by multiple convolutions. The experimental results show that compared with the yolov5s algorithm, the proposed method improves the mAP by 4.6% and the detection rate by 10.7 frame/s in the mask wearing detection. Compared with other mainstream algorithms, the improved yolov5s algorithm has better generalization ability and practicability.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the severe form of new coronavirus epidemic prevention and control, a target detection algorithm is proposed to detect whether masks are worn in public places. The Ghostnet and SElayer modules with fewer design parameters replace the BottleneckCSP part in the original Yolov5s network, which reduces the computational complexity of the model and improves the detection accuracy. The bounding box regression loss function DIOU is optimized, the DGIOU loss function is used for bounding box regression, and the center coordinate distance between the two bounding boxes is considered to achieve a better convergence effect. In the feature pyramid, the depthwise separable convolution DW is used to replace the ordinary convolution, which further reduces the amount of parameters and reduces the loss of feature information caused by multiple convolutions. The experimental results show that compared with the yolov5s algorithm, the proposed method improves the mAP by 4.6% and the detection rate by 10.7 frame/s in the mask wearing detection. Compared with other mainstream algorithms, the improved yolov5s algorithm has better generalization ability and practicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进Yolov5s的掩码检测算法
针对新型冠状病毒疫情防控的严峻形式,提出了一种检测公共场所是否佩戴口罩的目标检测算法。采用设计参数较少的Ghostnet和SElayer模块替代了原有Yolov5s网络中的BottleneckCSP部分,降低了模型的计算复杂度,提高了检测精度。对边界盒回归损失函数DIOU进行优化,使用DGIOU损失函数进行边界盒回归,并考虑两个边界盒之间的中心坐标距离,达到更好的收敛效果。在特征金字塔中,采用深度可分离卷积DW代替普通卷积,进一步减少了参数的数量,减少了多次卷积造成的特征信息损失。实验结果表明,与yolov5s算法相比,该方法在面具佩戴检测中mAP提高了4.6%,检测率提高了10.7帧/秒。与其他主流算法相比,改进的yolov5s算法具有更好的泛化能力和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Channel Attention for Chinese Scene Text Recognition Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion Comparative Study on EEG Feature Recognition based on Deep Belief Network VA-TransUNet: A U-shaped Medical Image Segmentation Network with Visual Attention Traffic Flow Forecasting Research Based on Delay Reconstruction and GRU-SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1