Seetha Babu Manepalli, S. Tomar, Dinkar Gaikwad, S. Maitra
{"title":"Abiotic stress signaling in plants and transgenic technology as a triumph: A review","authors":"Seetha Babu Manepalli, S. Tomar, Dinkar Gaikwad, S. Maitra","doi":"10.7324/jabb.2022.100501","DOIUrl":null,"url":null,"abstract":"The plants are exposed seasonally and continuously to various environmental and biodiversity stresses that inhibit and affect their life processes from seedling to harvest stage. Several irregularities are seen in light intensity, temperature, mineral and water availability, etc. These changes keep on challenges the plant to grow and reproduce itself and produce several environmental signals. To receive these signals, the plants themselves develop a signaling network with several receptors such as phytohormones, G-protein-coupled receptors, kinases, and hormone receptors. Signal transduction produces a cellular response in plants which initiates the physiological and developmental responses. This article reveals a keen and in-depth analysis of several mechanisms and perceptions of signal transduction during exposure to several kinds of abiotic stresses in plants, along with a generic pathway of signaling in plants. Plant abiotic stress often plays a pivotal role in causing losses through salinity, heat, cold, drought, etc. To understand and overcome these problems through conventional breeding, which was mainly dependent on genetic variations, several studies are going on model plants such as Arabidopsis, rice, and Brachypodium ; the accessibility of sources for these genomes is in the processing stage in wheat. On the other hand, the advancements in genome editing opened the doors for scientists to incorporate the desired trait in a particular plant species. The emerging developments in the second-generation genome editing technologies like CRISPR/cas9 paved the path for plant biologists to develop a trait more efficiently and rapidly, unlike conventional breeding methods. This review plots the importance of signaling during abiotic stress and transgene technology to prevail over abiotic stress in plants by ingesting desired traits in a plant.","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.100501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The plants are exposed seasonally and continuously to various environmental and biodiversity stresses that inhibit and affect their life processes from seedling to harvest stage. Several irregularities are seen in light intensity, temperature, mineral and water availability, etc. These changes keep on challenges the plant to grow and reproduce itself and produce several environmental signals. To receive these signals, the plants themselves develop a signaling network with several receptors such as phytohormones, G-protein-coupled receptors, kinases, and hormone receptors. Signal transduction produces a cellular response in plants which initiates the physiological and developmental responses. This article reveals a keen and in-depth analysis of several mechanisms and perceptions of signal transduction during exposure to several kinds of abiotic stresses in plants, along with a generic pathway of signaling in plants. Plant abiotic stress often plays a pivotal role in causing losses through salinity, heat, cold, drought, etc. To understand and overcome these problems through conventional breeding, which was mainly dependent on genetic variations, several studies are going on model plants such as Arabidopsis, rice, and Brachypodium ; the accessibility of sources for these genomes is in the processing stage in wheat. On the other hand, the advancements in genome editing opened the doors for scientists to incorporate the desired trait in a particular plant species. The emerging developments in the second-generation genome editing technologies like CRISPR/cas9 paved the path for plant biologists to develop a trait more efficiently and rapidly, unlike conventional breeding methods. This review plots the importance of signaling during abiotic stress and transgene technology to prevail over abiotic stress in plants by ingesting desired traits in a plant.