Deep learning for recommending subscription-limited documents

Grzegorz Chłodziński, Karol Wozniak
{"title":"Deep learning for recommending subscription-limited documents","authors":"Grzegorz Chłodziński, Karol Wozniak","doi":"10.1109/HSI49210.2020.9142663","DOIUrl":null,"url":null,"abstract":"Documents recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with multilayer perceptron in a hybrid recommender system. We train our model using real-world historical data from commercial platform using interactions to capture user similarity and categorical document features to predict the probability of a user-document interaction. Our experimental results demonstrate the effectiveness of the proposed architecture. We plan to release our model in a commercial online platform to support a personalized user experience.","PeriodicalId":371828,"journal":{"name":"2020 13th International Conference on Human System Interaction (HSI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI49210.2020.9142663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Documents recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with multilayer perceptron in a hybrid recommender system. We train our model using real-world historical data from commercial platform using interactions to capture user similarity and categorical document features to predict the probability of a user-document interaction. Our experimental results demonstrate the effectiveness of the proposed architecture. We plan to release our model in a commercial online platform to support a personalized user experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习推荐订阅有限的文档
对于基于订阅的商业在线平台来说,文档推荐非常重要,因为在客户可用的大量内容和多样性中导航很困难。然而,这也是一项具有挑战性的任务,因为每天添加的新文档数量和旧内容的相关性正在下降。为了解决这一问题,我们提出了一种将自编码器与多层感知器相结合的深度神经网络架构,用于混合推荐系统。我们使用来自商业平台的真实世界历史数据来训练我们的模型,使用交互来捕获用户相似性和分类文档特征来预测用户-文档交互的概率。实验结果证明了该结构的有效性。我们计划在商业在线平台上发布我们的模型,以支持个性化的用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-agent Interaction based on Game Theory: Case of a road traffic supervision task Electric Wheelchair-Humanoid Robot Collaboration for Clothing Assistance of the Elderly Needle insertion simulator for effective RF hyperthermia treatment Build confidence and acceptance of AI-based decision support systems - Explainable and liable AI Lightweight Convolutional Neural Network for Real-Time Face Detector on CPU Supporting Interaction of Service Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1