Providing Continuous 5G Connectivity along Ferry Lines – Concepts and Trials of 5G-ROUTES Project (Invited paper)

H. Zaglauer, Arturs Lindenbergs, M. Lankinen, K. Kaare, Kristjan Kuhi, Miquel Payaró
{"title":"Providing Continuous 5G Connectivity along Ferry Lines – Concepts and Trials of 5G-ROUTES Project (Invited paper)","authors":"H. Zaglauer, Arturs Lindenbergs, M. Lankinen, K. Kaare, Kristjan Kuhi, Miquel Payaró","doi":"10.1109/FNWF55208.2022.00105","DOIUrl":null,"url":null,"abstract":"The 5G-ROUTES project is part of the European effort to validate, test and pre-deploy 5G connectivity along major transport corridors with a focus on cross-border segments. It addresses Connected and Automated Mobility applications along the ‘Via Baltica North’ traversing Finland, Estonia, and Latvia and, also, 5G connectivity across the Baltic Sea between Finland and Estonia. The signal strength of coastal base stations both in the 700 MHz and 3.5 GHz frequency was measured along the ferry route between the ports of Helsinki/Vuosaari in Finland and Tallinn/Muuga in Estonia. Even though the 5G signals could be detected much further away from the coast than expected, there remains a gap in coverage that needs to be closed to provide continuous 5G connectivity of sufficient bandwidth. The installation of communication infrastructure along water ways is challenging and impossible in some areas, therefore the 5G-ROUTES project has investigated innovative approaches such as various multi-hop concepts and the use of satellites. In the planned trial phase, selected solutions shall be field tested and demonstrated to evaluate their suitability, technical maturity and performance. The obtained results of the 5G-ROUTES ferry trials will be applicable also to much longer ferry routes and can be transferred to road and rail transport in very remote areas where deployment of suitable 5G infrastructure may be technologically challenging and costly.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 5G-ROUTES project is part of the European effort to validate, test and pre-deploy 5G connectivity along major transport corridors with a focus on cross-border segments. It addresses Connected and Automated Mobility applications along the ‘Via Baltica North’ traversing Finland, Estonia, and Latvia and, also, 5G connectivity across the Baltic Sea between Finland and Estonia. The signal strength of coastal base stations both in the 700 MHz and 3.5 GHz frequency was measured along the ferry route between the ports of Helsinki/Vuosaari in Finland and Tallinn/Muuga in Estonia. Even though the 5G signals could be detected much further away from the coast than expected, there remains a gap in coverage that needs to be closed to provide continuous 5G connectivity of sufficient bandwidth. The installation of communication infrastructure along water ways is challenging and impossible in some areas, therefore the 5G-ROUTES project has investigated innovative approaches such as various multi-hop concepts and the use of satellites. In the planned trial phase, selected solutions shall be field tested and demonstrated to evaluate their suitability, technical maturity and performance. The obtained results of the 5G-ROUTES ferry trials will be applicable also to much longer ferry routes and can be transferred to road and rail transport in very remote areas where deployment of suitable 5G infrastructure may be technologically challenging and costly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在渡轮航线上提供持续的5G连接- 5G路线项目的概念和试验(邀请文件)
5G- routes项目是欧洲在主要交通走廊上验证、测试和预部署5G连接的努力的一部分,重点是跨境路段。它解决了穿越芬兰、爱沙尼亚和拉脱维亚的“Via Baltica North”沿线的互联和自动化移动应用,以及芬兰和爱沙尼亚之间横跨波罗的海的5G连接。沿芬兰赫尔辛基/武萨里港和爱沙尼亚塔林/穆加港之间的轮渡路线测量了700兆赫和3.5千兆赫频率沿海基站的信号强度。尽管5G信号可以在离海岸远得多的地方被检测到,但为了提供足够带宽的连续5G连接,仍然需要缩小覆盖范围的差距。在一些地区,沿水路安装通信基础设施是具有挑战性的,甚至是不可能的,因此5G-ROUTES项目研究了各种多跳概念和卫星使用等创新方法。在计划的试验阶段,应对选定的解决方案进行现场测试和论证,以评估其适用性、技术成熟度和性能。5G- routes轮渡试验获得的结果也将适用于更长的轮渡航线,并可转移到非常偏远地区的公路和铁路运输,在这些地区,部署合适的5G基础设施可能在技术上具有挑战性且成本高昂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs Machine Learning Aided Design of Sub-Array MIMO Antennas for CubeSats Based on 3D Printed Metallic Ridge Gap Waveguides A Supra-Disciplinary Open Framework of Knowledge to Address the Future Challenges of a Network of Feelings Resource Allocation with Vickrey-Dutch Auctioning Game for C-RAN Fronthaul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1