{"title":"Processing and manufacturing of next generation lithium-based all solid-state batteries","authors":"Wahid Zaman , Kelsey B. Hatzell","doi":"10.1016/j.cossms.2022.101003","DOIUrl":null,"url":null,"abstract":"<div><p>All solid-state batteries are safe and potentially energy dense alternatives to conventional lithium ion batteries. However, current solid-state batteries are projected to costs well over $100/kWh. The high cost of solid-state batteries is attributed to both materials processing costs and low throughput manufacturing. Currently there are a range of solid electrolytes being examined and each material requires vastly different working environments and processing conditions. The processing environment (pressure and temperature) and cell operating conditions (pressure and temperature) influence costs. The need for high pressure during manufacturing and/or cell operation will ultimately increase plant footprint, costs, and machine operating times. Long term, for solid state batteries to become economical, conventional manufacturing approaches need to be adapted. In this perspective we discuss how material selection, processing approach, and system architecture will influence lithium-based solid state battery manufacturing.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 4","pages":"Article 101003"},"PeriodicalIF":12.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 24
Abstract
All solid-state batteries are safe and potentially energy dense alternatives to conventional lithium ion batteries. However, current solid-state batteries are projected to costs well over $100/kWh. The high cost of solid-state batteries is attributed to both materials processing costs and low throughput manufacturing. Currently there are a range of solid electrolytes being examined and each material requires vastly different working environments and processing conditions. The processing environment (pressure and temperature) and cell operating conditions (pressure and temperature) influence costs. The need for high pressure during manufacturing and/or cell operation will ultimately increase plant footprint, costs, and machine operating times. Long term, for solid state batteries to become economical, conventional manufacturing approaches need to be adapted. In this perspective we discuss how material selection, processing approach, and system architecture will influence lithium-based solid state battery manufacturing.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field