Thermal conduction in graphite flake-epoxy composites using infrared microscopy

Rajath Kantharaj, Ishan Srivastava, Kunal R. Thaker, Aalok U Gaitonde, A. Bruce, J. Howarter, T. Fisher, A. Marconnet
{"title":"Thermal conduction in graphite flake-epoxy composites using infrared microscopy","authors":"Rajath Kantharaj, Ishan Srivastava, Kunal R. Thaker, Aalok U Gaitonde, A. Bruce, J. Howarter, T. Fisher, A. Marconnet","doi":"10.1109/ITHERM.2017.8023960","DOIUrl":null,"url":null,"abstract":"Thermally conductive polymer composites, in particular those composed of polymers and carbon-based nanomaterials, are promising for thermal management in electronic devices because they offer high thermal conductivity at low filler loading. The effective thermal properties of these composites exhibit high variability that depend on the topological arrangements and morphological characteristics of the filler particles. In order to tailor the thermal conduction within these composites for use as an efficient heat dissipation material, careful control of the microstructural arrangement of the filler material is required. In this work, we use infrared (IR) microscopy to characterize thermal transport through epoxy composites containing sub-millimeter sized graphitic flakes as filler particles. Graphite flake-epoxy composites of two volume fractions (3%, 25%) are prepared and characterized using an infrared microscope with a temperature resolution of 0.1 K that images the temperature distribution at the top surface of the composite subject to a temperature gradient. The effective thermal conductivity of the composite with a 25% filler fraction was found to be 2.9 W/m-K, a factor of 16 higher than the neat epoxy. With the micron-scale resolution of the IR microscope, the steady-state particle-scale temperature fields within the composite are directly observed and highlight the non-uniform heat transfer pathways. This local temperature analysis reveals the impact of important microstructural features such as clustering of filler particles. Ultimately, this approach could be used to investigate percolation and anisotropic heat conduction in composites with shear aligned particles.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.8023960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Thermally conductive polymer composites, in particular those composed of polymers and carbon-based nanomaterials, are promising for thermal management in electronic devices because they offer high thermal conductivity at low filler loading. The effective thermal properties of these composites exhibit high variability that depend on the topological arrangements and morphological characteristics of the filler particles. In order to tailor the thermal conduction within these composites for use as an efficient heat dissipation material, careful control of the microstructural arrangement of the filler material is required. In this work, we use infrared (IR) microscopy to characterize thermal transport through epoxy composites containing sub-millimeter sized graphitic flakes as filler particles. Graphite flake-epoxy composites of two volume fractions (3%, 25%) are prepared and characterized using an infrared microscope with a temperature resolution of 0.1 K that images the temperature distribution at the top surface of the composite subject to a temperature gradient. The effective thermal conductivity of the composite with a 25% filler fraction was found to be 2.9 W/m-K, a factor of 16 higher than the neat epoxy. With the micron-scale resolution of the IR microscope, the steady-state particle-scale temperature fields within the composite are directly observed and highlight the non-uniform heat transfer pathways. This local temperature analysis reveals the impact of important microstructural features such as clustering of filler particles. Ultimately, this approach could be used to investigate percolation and anisotropic heat conduction in composites with shear aligned particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用红外显微镜研究石墨片-环氧复合材料的热传导
导热聚合物复合材料,特别是由聚合物和碳基纳米材料组成的聚合物复合材料,在电子器件的热管理方面很有前景,因为它们在低填料负载下具有高导热性。这些复合材料的有效热性能表现出高度的可变性,这取决于填充颗粒的拓扑排列和形态特征。为了调整这些复合材料的导热性能,使其成为有效的散热材料,需要仔细控制填充材料的微观结构安排。在这项工作中,我们使用红外(IR)显微镜来表征含有亚毫米大小的石墨片作为填充颗粒的环氧复合材料的热传输。制备了两种体积分数(3%、25%)的石墨薄片环氧复合材料,并使用温度分辨率为0.1 K的红外显微镜对其进行了表征,红外显微镜对复合材料顶部表面的温度分布进行了温度梯度成像。填料含量为25%时,复合材料的有效导热系数为2.9 W/m-K,比纯环氧树脂高16倍。利用红外显微镜的微米级分辨率,直接观察到复合材料内部的稳态粒子尺度温度场,突出了非均匀传热路径。这种局部温度分析揭示了重要的微观结构特征的影响,如填料颗粒的聚集。最终,该方法可用于研究剪切定向颗粒复合材料中的渗透和各向异性热传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation characterization of thermal interface greases Gravity effects in microgap flow boiling Effect of electrode properties on performance of miniaturized vanadium redox flow battery Two-phase liquid cooling system for electronics, part 1: Pump-driven loop Development of algorithms for real-time estimation of smartphone surface temperature using embedded processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1